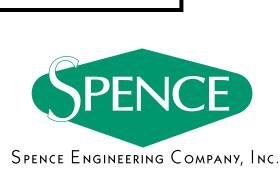
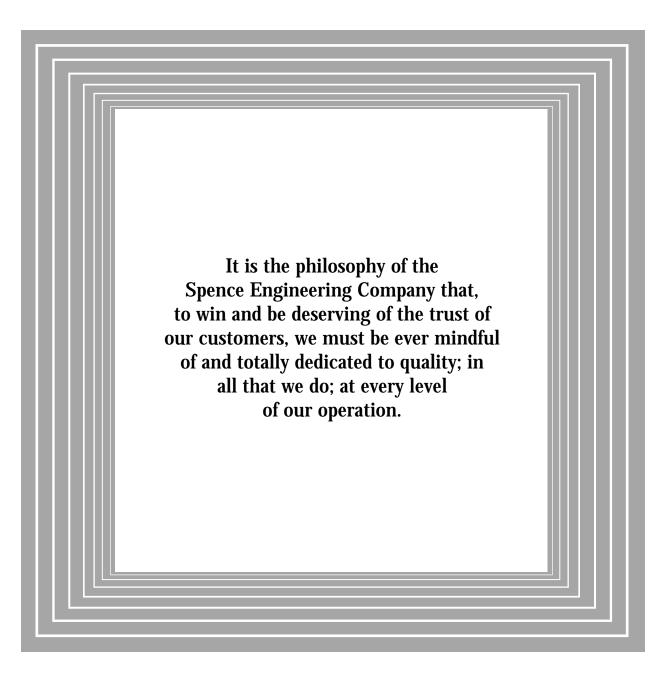

SPENCE SAFETY RELIEF VALVE DESIGNER'S GUIDE





- Safety Relief Valve Sizing
 - **Crossover Chart** •

ASME Code •

ISO 9001 Certificate Number: 33694

SPENCE ENGINEERING COMPANY is a member of the Fluid Controls Institute.

SPENCE ENGINEERING COMPANY has a policy of continuous product research and improvement and reserves the right to change design and specifications without notice. Responsibility for typographical errors is specifically disclaimed.

SAFETY RELIEF VALVE DESIGNER'S GUIDE

NOTES:

SPENCE ENGINEERING COMPANY, INC.

The Spence Engineering Company was founded in 1926 by Paulsen Spence in Walden, New York. Paulsen Spence developed the original patent for the normally closed external pilot operated packless pressure regulator. This design is the basis for the products offered today. This technology offers the maximum in application and selection flexibility. Spence stands alone in their ability to produce regulators up to 12 inches in cast iron and cast steel. Their pilots are used to control pressure, temperature, differential pressure or back pressure either mechanically or with a pneumatic pilot.

Spence Engineering is a widely recognized leader in the steam regulator and flow control field. Spence regulators are used extensively for heating systems in buildings, institutions and district heating systems as well as major industrial plants.

In 1984, Spence Engineering was acquired by Watts Industries. The company continued to grow and develop new fluid control and steam specialty products. A new line of pneumatic control valves was introduced in 1986. In 1989, a range of self contained temperature regulators was added to the line to meet the demand for an economical temperature regulator.

1990 was an active year, with Spence becoming certified by the ASME for the assembly and setting of safety relief valves manufactured by their sister Watts company in Canada. Spence was also instrumental in the acquisition and management of the Nicholson Steam Trap Company. In 1994, Nicholson was integrated into the Spence Plant.

Spence continued it's product development program with the introduction of variable orifice steam traps and pressure operated condensate pumps. In 1996, Watts moved the manufacturing responsibility for safety valves to the Spence Engineering plant in Walden, New York. Spence is now an ASME certified manufacturer of bronze and iron safety relief valves.

Watts Industries, Inc. split in 1999 and Spence Engineering Company became a division of the newly formed corporation, Circor International.

Spence Engineering continues to focus their attention on providing single source steam specialty products for regulating and control of steam and fluids for the institutional and industrial marketplace. Their growth efforts are to expand the already comprehensive product capabilities to reach new developing markets.

For more information on Spence Engineering Co., visit our website at <u>www.spenceengineering.com</u> or reach us via e-mail at <u>sales@spenceengineering.com</u>

A division of CIRCOR International, Inc.

THE SPENCE ADVANTAGE IS SERVICE

LOCAL TECHNICAL SUPPORT

Spence Engineering has a network of technically trained Representatives around the world. These Representatives can direct you to local inventory of our products for fast, fast service. They can also help you in the selection and sizing of Regulators, Pilots, Desuperheaters and Noise Suppression Products.

TECHNICAL TRAINING

We offer a regular schedule of workshops covering various technical issues in our state of the art Valve Technology Training Center. We can also schedule customized training sessions to suit your particular needs.

ENGINEERING SEMINARS. These seminars provide the engineer with the skills of regulator selection and sizing.

DISTRIBUTOR SEMINARS. This seminar will provide you with all the information you need to serve your customers.

MAINTENANCE SEMINARS. Maintenance personnel will receive hands-on training in selection, installation, operation, maintenance and troubleshooting.

INTERNATIONAL SALES

Spence is well equipped to provide product to our customers around the world. We regularly ship our products to all parts of the world. Our experienced international sales group can meet the transport and documentation requirements of our international customers with ease. Our network of International Technical Sales Representatives will also be able to provide you with product from local inventory.

ENGINEERED SOLUTIONS

Spence offers a very comprehensive line of specialty options to enhance and optimize valve performance. We can tailor custom solutions for your most unique process applications. Call us for solutions.

TABLE OF CONTENTS

READY TO START?

The best way to make a selection is to contact your local Spence Engineering Technical Sales Representative. Our network of factory trained Representatives will offer you a choice of solutions for your application utilizing our Computer Valve Sizing Program. For the name and number of your local Spence Representative, call our Hotline at 1-800-398-2493 or visit our website at www.spenceengineering.com.

Spence Engineering Company, Inc. History
The Spence Advantage is Service4
TABLE OF CONTENTS
Spence Safety Valve Selection Chart6
Spence/Kunkle Competitive Crossover Chart7

VALVES

Figure 31 / 41 Bronze Series10
Figure 31 / 41 Cast Iron Series18
Figure 800 Series
Figure 10 Series
Figure 15 Series
Figure 15V Series
Figure 50 Series
Drip Pan Elbow

DESIGN

Basics of Relief Valves
Dual Ring Control
Sizing Guidelines
Pipe Data Table
Capacity of Saturated Steam Table
Safety Valve Sizing By Computation
Table E1–Spence Valve Coefficients (Kd)
Table E2–Typical Properties of Gases

Table E3–Gas Constant (C)
Table E4–Superheat Correction Factor (Ksh)
Graph E5–Superimposed (constant) Backpressure Sizing Factor (Kb)
Graph E6–Superimposed or Variable Backpressure Sizing Factor (Kb)
Graph E7–Capacity Correction Factors due to Overpressure59
Graph E8–Capacity Correction Factor due to Viscosity60
Graph E9–Capacity Correction Factor due to Backpressure (Kw)60
Spence SRV Testing Specifications61
Summary of ASME Codes & Standards62
Comparison of ASME Section I to Section VIII
Installation, Maintenance & Troubleshooting Guidelines
Planning Main Valve Installation67
Main Valve Sizing By Computation68
Regulator Cv Data69
Control Valve Cv Data70

EXCERPTS FROM ASME CODE

Excerpts from ASME Section I
Excerpts from ASME Section IV91
Excerpts from ASME Section VIII101

SPENCE SAFETY VALVE SELECTION CHART

Valve Series	Inlet Sizes	Min/Max* Set Pressures	Min/Max* Temperatures	Conne	ections		Fluid			02	ASME	PED [†]	Page	
Valve Series	inches (mm)	PSIG (barg)	°F (°C)		Flanged	Steam	Air	Gas	Liquid	Vacuum	Cleaning	Section ⁺		i uge
10	3/4 - 3 (20 - 80)	5 - 15 (.3 - 1)	-10 to 250 (-29 to 121)	Х		Х						IV		36
15C/15LC	3/4 - 3 (20 - 80)	5 - 15 (.3 - 1)	-20 to 400 (-29 to 204)	х			Х	х				None		38
15A/15LA	3/4 - 3 (20 - 80)	5 - 15 (.3 - 1)	-20 to 400 (-29 to 204)	х			Х	х				None		38
15V/15LV	3/4 - 3 (20 - 80)	5 - 30 in HG (169.3 - 1015.9 mbarg	-20 to 400 (-29 to 204)	Х						Х		None		40
31/33 Bronze	1/2 - 2-1/2 (15 - 65)	5 - 250 (.3 - 17.2)	-20 to 406 (-29 to 208)	Х		Х						Ι	t	10
32 Bronze	1/2 - 2-1/2 (15 - 65)	5 - 300 (.3 - 20.7)	-20 to 422 (-29 to 216)	Х		х						Ι	t	10
41/43 Bronze	1/2 - 2-1/2 (15 - 65)	5 - 250 (.3 - 17.2)	-20 to 406 (-29 to 208)	Х		Х						VIII	t	10
42 Bronze	1/2 - 2-1/2 (15 - 65)	5 - 300 (.3 - 20.7)	-20 to 422 (-29 to 216)	Х		х						VIII	t	10
41A/43A Bronze	1/2 - 2-1/2 (15 - 65)	5 - 250 (.3 - 17.2)	-20 to 406 (-29 to 208)	х			Х					VIII	t	10
42A Bronze	1/2 - 2-1/2 (15 - 65)	5 - 300 (.3 - 20.7)	-20 to 422 (-29 to 216)	Х			Х					VIII	†	10
41AA Bronze	1/2 - 3/4 (15 - 20)	5 - 250 (.3 - 17.2)	-20 to 406 (-29 to 208)	х			Х	х				VIII	t	10
42AA Bronze	1/2 - 3/4 (15 - 20)	5 - 300 (.3 - 20.7)	-20 to 422 (-29 to 216)	х			Х	Х				VIII	t	10
41AT/43AT Bronze	1/2 - 2 (15 - 50)	5 - 250 (.3 - 17.2)	-20 to 406 (-29 to 208)	х			Х					VIII	†	10
42AT Bronze	1/2 - 2 (15 - 50)	5 - 300 (.3 - 20.7)	-20 to 422 (-29 to 216)	х			Х					VIII	t	10
31/32 Cast Iron	1-1/2 - 6 (40 - 150)	5 - 250 (.3 - 17.2)	-20 to 406 (-29 to 208)	Х	Х	Х						I		18
41/42 Cast Iron	1-1/2 - 6 (40 - 150)	5 - 250 (.3 - 17.2)	-20 to 406 (-29 to 208)	Х	Х	Х						VIII		18
41A/42A Cast Iron	1-1/2 - 6 (40 - 150)	5 - 250 (.3 - 17.2)	-20 to 406 (-29 to 208)	Х	Х		Х					VIII		18
810/812/814/816	1/2 - 1-1/2 (15 - 40)	5 - 250 (.3 - 17.2) 10 to 30 in HG (338.6 to 1015.9 mbarg	-20 to 406 (-29 to 208)	х		х	Х	х	х	Х		VIII	t	24
820/822/824/826		5 - 900 * (.3 - 62.0) 10 to 30 in HG (338.6 to 1015.9 mbarg	-20 to 422 (-29 to 216)	x		х	Х	х	х	Х		VIII	t	24
860/862/864/866	1/2 - 1-1/2 (15 - 40) 10 to 30 in HG	5 - 900 * (.3 - 62.0) (338.6 to 1015.9 mbarg	-20 to 422 (-29 to 216)	х		х	Х	x	х	Х		VIII	t	24
50/52	2 (50)	10 - 30 (.7 - 2.1)	-20 to 225 (-29 to 107)	Х			Х					None		42
51/53	2 (50)	10 - 30 (.7 - 2.1)	-20 to 225 (-29 to 107)	Х			Х					None		42
710/715 RXSO	1/2 - 2 (15 - 50)	10-400 (.7 - 27.6)	-423 - 400 (-252 - 204)	Х			Х	Х			Х	VIII	t	
760/765 RXSO-S	1/2 - 1 (15 - 25)	10-400 (.7 - 27.6)	-423 - 400 (-252 - 204)	Х			Х	Х			Х	VIII	t	
770 RSL	1/2 - 2 (15 - 50)	10-300	0 - 300 (-17 - 148)	Х					Х		Х	None		
775 RLS-S	1/2 - 2	10-300	0 - 300	Х					Х		Х	None		
NEO O	(15 - 50)	(.7 - 27.6)	(-17 - 148)											

* Pressure and temperature ranges may vary, depending upon valve size, material, etc.

Please consult the appropriate product catalog for specific data.

⁺ ASME does not certify valves below 15 PSIG.

† Consult Factory for PED availability.

VALVES

SELECTION CHART

SPENCE/KUNKLE COMPETITIVE CROSSOVER CHART

WHY CHOOSE SPENCE SAFETY AND RELIEF VALVES?

Spence Engineering sets and tests all valves in accordance with the applicable ASME code and API 527. Most competitive valves do not meet API 527, leading to premature simmering and leakage causing system problems and premature valve failure.
 Spence Engineering Safety and Relief Valves are designed and manufactured with a more rugged body/bonnet design than most competitive valves. This exceptionally rugged design withstands excessive piping strains that often lead to valve failure.

6000 Series 5000 Series cont. 900 Series 900 Series cont. 900 Series cont. 900 Series cont. Model 610 Serie defaulting defined form	KUNKLE SPENCE	KUNKLE SPENCE	KUNKLE SPENCE	KUNKLE SPENCE	KUNKLE SPENCE	KUNKLE SPENCE
Dimonsition Cabox Sec float Cabox Sec floa	6000 Series	6000 Series cont.	900 Series	900 Series cont.	930 Series	20 Series cont.
etholog DDA oligibility Same as Model 911 See Model 911 Model 911 Model 911 e01000 DDA oligibility AARTEE Model 911 Model 911 Same as 911 Model 911 e01000 DDA oligibility AARTEE Model 911 Same as 911 Model 911 e01000 DDA Model 911 Same as 911 With 501 scale 9 Model 912 e010000 DDA Model 913 Same as 911 With 501 scale 9 Model 912 e010000 DDA Model 913 Same as Model 910 Same as Model 910 Same as Model 911 Same as Model 9101 Same as Model 9101 Same as Model 9101 Model 911 Model 911 Same as Model 910 Same as Model 911	Side Outlet with	Same as 6182 with	Full nozzle with Carbon Steel body	Same as 910 with soft seat See Model 917 for equal	Cast Iron for ASME	
Construction Pain Cap Pain Cap Construction Pain Cap Pain Cap P	6010DDDDA 6010EDEDA 6010EEEEA	6121ED 43ATEDE 6121FE 43ATFEE 6121GF 43ATGFE	See Model 911 for equal SS conversion Model 911	Model 917 Same as 911	0930-J01 0010ZJA	Model 299 Drip Pan Elbows
60100	6010FF	6121JH 43ATJHE Model 6130	contruction Plain Cap 911BDCM01 860NDCA 911BEDM01 860NEDA	Plain Cap 917BDC_01 86NDCA 917BED_01 86NEDA 917BFE_01 86NFEA	Model 300 Cryogenic	299-E DPE-E 299-F DPE-F 299-G DPE-G 299-H DPE-H
with raften disc isset? 6130GF 424THEF 911BEFM03 606EFA 911BEFM03 606FA 911BEFM03 806FFA 911BEFM03 806FA 911BEFM03 806FFA 911BF	6010JJJJA Model 6021	6130DC 42ATCDE 6130ED 42ATEDE	911BGFM01 860NGFA 911BHGM01 860NHGA Open Lever 911BDCM03 860EDCA	917BHG_01 86NHGA Open Lever 917BDC_03 86EDCA 917BED_03 86EEDA	363C *710N 389C *760N (SS)	299-K DPE-K 299-M DPE-M 299-P DPE-P
4021E EAA (201E Constrained (201E) Constrained (201E) <thconstrained (201E) <thconstrained (201E)</thconstrained </thconstrained 	with Teflon disc insert ^{2, 3}	6130HG 42ATHGE	911BFEM03 860EFEA 911BGFM03 860EGFA 911BHGM03 860EHGA Packed Lever	917BGF_03 86EGFA 917BHG_03 86EHGA Packed Lever	Model 20 Bronze with plain	Model 215V
do2114 CHGA Induct 222 (CST KT) Induct 222 (CST KT) <thinduct 222<br="">(CST KT) Induct 222</thinduct>	6021EDEDA 6021EEEEA 6021FEFEA 6021FFFFA 6021GFGFA	(Formerly 252)	911BEDM06 860PEDA 911BFEM06 860PFEA 911BGFM06 860PGFA 911BHGM06 860PHGA	917BED_06 86PEDA 917BFE_06 86PFEA 917BGF_06 86PGFA	0020-C01 810NDCA 0020-D01 810NEDA 0020-E01 810NFEA 0020-F01 810NGFA	Vacuum Service ¹⁰ 215V-H01 015VZHA 215V-J01 015VZJA
Model 6030 D22203 Sign G GC 912BEDMOT at STOREA 913BEC_12 81.NECA 0220-201 stoPCA 0337-101 ottsC2HA 0337-101 ottsC2HA Same as Model 6010 6252AKH KKC 912BEGMOT attoFKA 913BEC.01 81.NEFA 913BEC.01 81.NEFA 0200-201 810PEDA 0337-101 ottsC2HA 0337-101 ottsC2HA 6030DC DCA 6252FKJ KKC Open Lever 913BEC.01 81.NEFA 913BEC.01 81.NEFA 0200-201 810PEFA 0337-101 ottsC2HA 037-101 ot	6021HGHGA 6021HHHHA 6021JHJHA	(Formerly 252) Cast Iron with bronze/brass trim ¹	Full nozzle with SS disc and bronze base Plain Cap	Same as 912 with soft seat ^{6, 7}	Model 20P Same as model 20 with packed lever	Model 337
6030DC 6030DD 0030D 0030D 0030E6257KK 6252ALL 6252FLK 6252FLK 6252FLK 6030EF 6303CF6252FLK 12E 12E12B 912BEDM03 912BEDM03 912BEDM03 912BEDM03 912BEDM03 912BEDM03 912BEDM03 912BEDM03 912BEDM04 912BEDM04 912BEDM06 9	Same as Model 6010 with SS disc	6252FJGJGC 6252AKHKHB 6252FKHKHC	912BEDM01 810NEDA 912BFEM01 810NFEA 912BGFM01 810NGFA 912BHGM01 810NHGA	918BDC_12 81NDCA 918BED_01 81NEDA 918BFE_01 81NFEA 918BGF_01 81NGFA	020P-D01 810PEDA 020P-E01 810PFEA	0337-J01 015CZJA 0337-K01 015CZKA
6030FF FFA 6252KPM MCC Packed Lever 918BHC_03 81_EHGA See page 10 6030GF GGA 6252KPM PMD 912BFEM06 810PFEA 918BED_06 81_PEDA 6030H HAA 6252KPM PMD 912BFEM06 810PFEA 918BED_06 81_PEDA 918BED_06 81_PEDA 6030H HAA 6252KPM PRD 912BFEM06 810PFEA 918BED_06 81_PEDA 918BED_06 81_PEDA 918BED_06 81_PEDA 918BED_06 81_PEDA 4Choose SPENCE model 0032, 0042 or 042A 6030JH HAA 6252KPM RPD 912BFEM06 810PFEA 918BEC_06 81_PEDA 918BEC_06 81_PEGA 4Choose SPENCE model 0032, 0042 or 042A 6030JH JJJA Model 6182 Model 6133 Same as 912 with 316SS Same as 913 918BEN016 81_PEGA 918BEN_06 81_PEGA 4Choose SPENCE model Notice insert 6Choose SPENCE model Notice insert 9108ED 5SPENCE model Notice insert 6Choose SPENCE model Notice insert 6Kunkle Soft Seat (o-ring) choices - B (Buna N), E (EPR), S (Silicone), V (Viton) or N(Neoprene) 6Kunkle Soft Seat (o-ring) choices - B (Buna N), E 913BEDM	6030DDDDA 6030EDEDA 6030EEEEA 6030EFEEA	6252ALJLJB 6252FLJLJC 6252FLKLKC 6252AMK MKB	912BDCM14 810EDCA 912BEDM03 810EEDA 912BFEM03 810EFEA 912BGFM03 810EFEA 912BGFM03 810EGFA	Open Lever 918BDC_14 81EDCA 918BED_03 81EEDA 918BFE_03 81EFEA	depending on Choice of A <i>See page 10</i> ² Choose SPENCE model 0	SME code Setting 033, 0043 or 043A
Model 6182 formeriy 253Model 6253 (Formeriy 253)Model 913 Same as 6252 with Same as 6252 with 6182DC 41ATCDE 6182DC 41ATCDE 6182DC 41ATCDE 6182CF 41ATFEE 6182DF 41ATFEE 6182DF 41ATFEE 6182DF 41ATFEE 6182DF 41ATFEE 6182DF 41ATFEE 6182DF 41ATFEE 6182DF 41ATFEE 6182DF 41ATFEE 6253FKJ KL/C 6253FKJ KL/C 6253FKJ KL/C 6253FKJ KL/C 6253FKJ KL/C 6253FKJ KL/C 6186DC 41ATCDE 6186DC 41ATCDE 6253FKK MLModel 6186 4C53FKL KLC 913BDCM17 820PCA 913BDCM17 820PCA 913BEDM08 820EFA 913BEDM08 820EFA 913BDCM17 820PCA 913BEDM08 820EFA 913BDCM17 820PCA 913BEDM08 820EFA 913BEDM08 820FFA 913BEDM08 820FFA 913BEDM08 820FFA 913BEDM08 820FFA 913BEDM08 820FFA 913BEDM08 820FFA 913BEDM08 820FFA 913BEDM08 820FFA 913BEDM08 820FFA 913BEDM08 820FFA 913BEDM0	6030FF	6252KNMNMD 6252KPMPMD 6252KQPQPD	Packed Lever 912BDCM17 810PDCA 912BEDM06 810PEDA 912BFEM06 810PFEA	918BHG_03 81EHGA Packed Lever 918BDC_17 81PDCA 918BED_06 81PEDA	See page 10 ³ SPENCE models 0033 and model 043A has Viton disc	d 0043 have EPDM and c insert
Top Outlet with bronze/brass trimSame as 6/32 with S semi nozzle and disc4Dase and disc4Same as 913 with soft seat6.8OSPENCE model has viton disc insert6182DC 41ATCDE 6182FE 41ATGFE 6182GF 41ATGFE 6182HG 41ATHGE 6182HG 41ATHGE 6182JH 41ATJHE6253AJG _JGB 6253FKH _KHC 6253FKH _KHC913BEDM01 820NEDA 913BEFM01 820NEDA 913BEFM01 820NEDA 913BEGM01 820NEDA 919BED_01 82_NEPA 919BED_01 82_EEDA 919BED_01 82_EEDA 919BED_	6030JJJJA Model 6182		912BHGM06 810PHGA Model 913 Same as 912 with 316SS	918BHG_06 81PHGA	depending on Choice of A See page 10	SME code Setting
6182DC41ATCDE6253AJGJGB913BDCM12820NDCAPlain Cap919BDC.1282_DCA6182ED41ATEDE6253FJGJGC913BEDM01820NEDA919BDC.1282_DCA919BDC.1282_DCA6182GF41ATGFE6253FKIKKC913BFEM01820NFCA919BED_0182_NFEA919BED_0182_NFEA6182JH41ATHGE6253FKIKKC913BECM01820NFCA919BEF_0182_NFEA919BEF_0182_NFEA6182H6253FKIKKC913BECM14820DECA919BED_0182_NFEA919BEC_0182_NFEA6182H6253FKIKKC913BECM01820DECA919BED_0182_NFEA919BEC_0182_NFEASame as 61826253FLJLUC913BEFM03820EFEA919BED_0382_EEDA919BEF_0382_EFEAexcept maximum6253FKKMKC913BEGM03820EFEA919BEF_0382_EFEA919BEF_0382_EFEApressure is 150 PSIG6253FMKMKC913BECM17820PECA919BEF_0382_EFEA919BEF_0382_EFEA6186CD41ATCDE6253KNMMKC913BEDM06820PEDA919BED_0682_PECA919BED_0182_EFEA6186CF41ATFEE6253KNMPMD913BEDM66820PEFA919BEF_0682_PEFA919BEF_0682_PEFA6186GF41ATFEE6253KOPQPD913BEFM06820PEFA919BEF_0682_PEFA919BEF_0682_PEFA6186GF41ATFEE6253KOPQPD913B		SS semi nozzle		Same as 913		
OffS2/IG41ATUJE6253FKH_KHC913BGM01820NHGA919BGF_0182_NGFA8Choose SPENCE model 822 (EPDM), 824 (Viton) or 826 (TFE/25% Glass) o-ringModel 61866253FKK_KKC913BEDM03820EDCA919BDC_1482_EDCA919BC_0182_V(Viton) or 826 (TFE/25% Glass) o-ringSame as 61826253FLJ_LIC913BFEM03820EFCA919BGF_0382_EEDA919BGF_0382_EEDAexcept maximum pressure is 150 PSIG6253FLK_LKC913BFCM03820EFA919BGF_0382_EEDA919BGF_0382_EEDA6186CD41ATCDE6253FMK_MKC913BEDM06820PEDA919BC_1782_PDCA919BC_1382_EEDA6186FE41ATFEE6253KNM_MMD913BFEM06820PEDA919BED_0682_PFEA919BED_0682_PEDA6186GF41ATGFE6253KOP_QPD913BFEM06820PEFA919BEF_0682_PFEA919BEF_0682_PFEA6186GF41ATGFE6253KOP_QPD913BFEM06820PEFA919BEF_0682_PFEA919BEF_0682_PFEA6186GF41ATGFE6253KOP_QPD913BFEM06820PEFA919BEF_0682_PFEA* Pressure limited	6182ED 41ATEDE 6182FE 41ATFEE 6182GF 41ATGFE	6253AJGJGB 6253FJGJGC	913BEDM01 820NEDA 913BFEM01 820NFEA 913BGFM01 820NGFA	919BDC_12 82DCA 919BED_01 82NEDA 919BFE_01 82NFEA	(EPR), S (Silicone), V (Vitor ⁷ Choose SPENCE model 8	n) or N(Neoprene) 12 (EPDM),
Same as 6182 except maximum pressure is 150 PSIG6253FLJ 6253FLK 6186FL 6186FL 6186GF 6186GF 6186GF 6114TGFE 6253KQP 6253KQP 6186GF 6253KQP 6198GFL06 6253KQP 919BED06 913BEDM06 913BEFM06 913BEFM06 820PEAA 919BEF_06 919BEF_06 919BEF_06 919BEF_06 919BEF_06 919BEF_06 920FFA919ELD 919BEF_03 919BEF_03 919BEF_03 919BEF_03 919BEF_03 919BEF_03 919BEF_03 919BEF_03 919BEF_03 919BEF_03 919BEF_03 919BEF_03 919BEF_03 919BEF_03 919BEF_03 919BEF_03 919BEF_03 919BEF_04 919BEF_04 919BEF_04 919BEF_04 919BEF_04919ELD 913BEFM06 920PEA 919BEF_04 919BEF_04 919BEF_04 919BEF_04919ELD 919BEF_04 920FEA 919BEF_04 919BEF_04919ELD 913BEFM04 919BEF_04 919BEF_04919ELD 913BEFM04 919BEF_04 919BEF_04919ELD 913BEFM04 919BEF_04 919BEF_04919ELD 913BEFM04 919BEF_04 919BEF_04919ELD 913BEFM04 919BEF_04919ELD 913BEFM04 919BEF_04919ELD 913BEFM04 919BEF_04919ELD 913BEFM04 919BEF_04919ELD 913BEFM04 919BEF_04919ELD 913BEFM04 919BEF_04919ELD 913BEFM04 919BEF_04910ELD 910EF 910EF 910EF 9	6182JH 41ATJHE	6253FKHKHC 6253FKJKJC 6253FKKKKC	Open Lever 913BDCM14 820EDCA 913BEDM03 820EEDA	919BHG_01 82NHGA Open Lever 919BDC 14 82 EDCA	⁸ Choose SPENCE model 8 824 (Viton) or 826 (TFE/25	22 (EPDM), % Glass) o-ring
6186DC 41ATCDE 0233700 min 913BDCM17 820PDCA 919BDC_17 82_PDCA for vacuum service, outlet connection gets 6186ED 41ATEDE 6253KNM	Same as 6182 except maximum pressure is 150 PSIG	6253FLJLJC 6253FLKLKC 6253AMKMKB	913BGFM03 820EGFA 913BHGM03 820EHGA Packed Lever	919BFE_03 82EFEA 919BGF_03 82EGFA 919BHG_03 82EHGA	or 866 (TFE/25% Glass) o	-ring
	6186ED 41ATEDE 6186FE 41ATFEE	6253KNMNMD 6253KPMPMD	913BEDM06 820PEDA 913BFEM06 820PFEA	919BDC_17 82PDCA 919BED_06 82PEDA 919BFE_06 82PFEA	for vacuum service, outlet connected to vacuum side	connection gets

This crossover chart is to be used as a guideline ONLY. All applications should be reviewed in the product catalog or by the factory. All valve data should be reviewed before final selection (physical dimensions, capacity requirements, materials, inlet/outlet connections, etc.) Neither Spence Engineering nor it's agents assume any responsibility for the selection and/or cross reference of any product. Spence Engineering does not guarantee that this information is accurate and/or up to date, therefore it should be used only as a guide.

VALVES

SPENCE/KUNCKLE CROSSOVER CHART

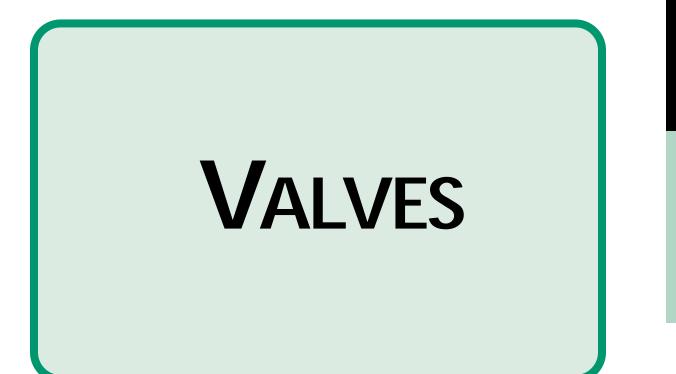


FIGURE 31 / 41 BRONZE SERIES

FIGURE 31 BRONZE SERIES

APPLICATION DATA

- Steam Boilers
- Pressure Reducing Stations
- Unfired Steam Pressure Vessels & Lines
- Accumulators, Sterilizers, Steam Cleaners
- Air compressors, Cookers, Receivers
- Pneumatic Systems
- OEM Equipment

VALVE RATINGS See Capacity Charts beginning on page 14

Model	Pressure PSIG (bar)	Temperature °F (°C)
0031/0041/041A/41AT/41AA	10 to 250 (.7 to 17.2)	-20 to 406 (-29 to 208)
0032/0042/042A/42AT/42AA	10 to 300 (.7 to 20.7)	-20 to 422 (-29 to 216)
0033/0043/043A/43AT	10 to 250 (.7 to 17.2)	-20 to 406 (-29 to 208)

APPLICABLE CODES

- ASME Section I "V" for Steam
- ASME Section VIII "UV" for Steam/Air/Gas
- API 527
- Canadian Registration # 0G0591.9C
- PED (Consult Factory)

FIGURE 31 / 41 BRONZE SERIES

SIZES 1/2" – 21/2" PRESSURES to 300 PSIG at 422°F

- Meets ASME Section I & VIII Code for Steam, Air & Non-hazardous Gas Service
- "V" or "UV" National Board Certified
- Dual Ring Control See page 12
- Rugged Cast Unitized Bonnet
- SS Spring Supplied as Standard
- Full Nozzle
- Soft Seat Design Available See page 12
- Open Lever Assembly

OPTIONS

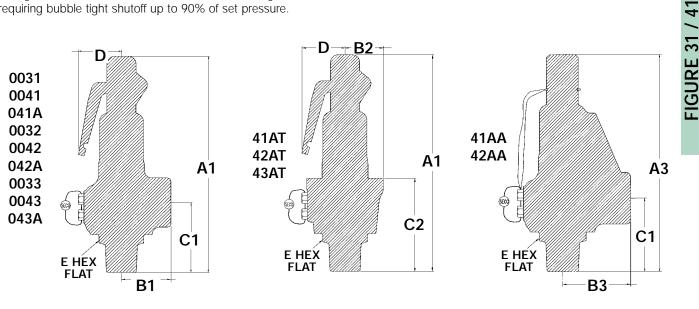
- Top Outlet Discharge
- BSP Connections
- Soft Seated Valves
- Plain Cap (on selected models)
- Test Reports Available

MODELS

06	 0031 - ASME Section I Steam, Bronze Trim
08)	0041 - ASME Section VIII Steam, Bronze Trim
22	041A - ASME Section VIII Air, Bronze Trim
16)	41AT - Top Outlet on 041A
, 06	41AA - Plain Cap on 041A (D orifice only)
08)	0032 - SS Base & Disc on 0031
00)	0042 - SS Base & Disc on 0041
	042A - SS Base & Disc on 041A
	42AT - SS Base & Disc on 41AT
	• 42AA - SS Base & Disc on 41AA (D orifice only)
	OO33 EDDM Soft Soat on OO31

- 0033 EPDM Soft Seat on 0031
 0043 EPDM Soft Seat on 0041
- 043A Viton Soft Seat on 041A
- 43AT Viton Soft Seat on 41AT

		Mo		_	Orifice	e Inlet Size	Connec tions	s	et Pressu	sure
	0	0	4	1	D	С	Α	- 0	4	0
	1	2	3	4	5	6	7	8	9	10
Model - Position 1, 2 0031 = ASME Secti 0041 = ASME Secti 041A = ASME Secti 41AT = Top Outlet 41AA= Plain Cap or 0032 = SS Base & I 0042 = SS Base & I 042A = SS Base & I 42AT = SS Base & I 42AA = SS Base & I 0033 = EPDM Soft 0043 = EPDM Soft 043A = Viton Soft S 43AT = Viton Soft S	on I S on VIII on VIII on 041 Disc o Disc o Disc o Disc o Seat c Seat c eat on	team, E Steam Air, Bra A (D ori n 0031 n 0041 n 041A n 41AT n 41AA n 0031 n 0041 o 041A	i, Bron onze T fice on	ze Trim rim		G = H =	ze - Po ½ ¾ 1 1¼ 1½		TS (us	Connections - Position 7 A = MPT x FPT E = MPT x Top F = MBSP x FBSP Z = Other Get Pressure - Position 8, 9 & 10 = Actual Setting LAS - Loosely Assembled' Spence Certified Assemblers Only se 0031, 0032, 0033, 41AT, 42AT, 3AT, 41AA or 42AA only)



CODE SELECTION CHART

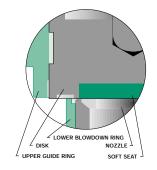
FIGURE 31 / 41 BRONZE SERIES

SPECIFICATION

The valve shall meet the ASME Section I or VIII Code for steam, air and gas services. It shall be "V" or "UV" National Board Certified. The valve shall have dual blowdown ring to allow better adjustment of the pop and blowdown. The valve shall consist of a unitized bonnet design guaranteeing proper guiding and making the valve extremely dependable in terms of pop action, seat tightness and repeatability. The valve shall be top guided and shall have a full nozzle for optimum flow performance. The valve shall have a stainless steel spring for better corrosion and yield strength. The valve shall meet the API 527 leakage standard requiring bubble tight shutoff up to 90% of set pressure.

DIMENSIONS* inches (mm) **AND WEIGHTS** pounds (kg)

						· /			•	()/			
Model	Inlet	Orifice	Outlet ⁽²⁾	A1	A3	B1	B2	B3	C1	C2	D (1)	E	Weight
****DCA	½ MPT	D	³ / ₄ FPT	6%	6¼	1¾	11/16	1%	2¼	21/8	1¾	1½	2
	(15)		(20)	(166.7)	(158.8)	(34.9)	(27.0)	(47.6)	(57.2)	(73.0)	(34.9)	(28.6)	(0.91)
****DDA	3/4 MPT	D	³ / ₄ FPT	6%	6¼	1%	_	1%	2¼		1%	1¼	2¼
	(20)		(20)	(166.7)	(158.8)	(34.9)		(47.6)	(57.2)		(34.9)	(31.8)	(1.02)
****EDA	34 MPT	E	1 FPT	7⅓	_	1%	1¼		2 5⁄1₀	31⁄8	1%	1¼	2½
	(20)		(25)	(181.0)		(41.3)	(31.8)		(58.7)	(79.4)	(34.9)	(31.8)	(1.13)
****EEA	1 MPT	E	1 FPT	7⅓	_	1%	_	_	2 ⁵ ⁄₁₀	_	1¾	1½	2 ³ ⁄4
	(25)		(25)	(181.0)		(41.3)			(58.7)		(34.9)	(38.1)	(1.25)
****FEA	1 MPT	F	1¼ FPT	9	—	1%	11/16	—	2 ¹³ /16	3½	1 ¹¹ / ₁₆	1½	4
	(25)		(32)	(228.6)		(47.6)	(36.5)		(71.4)	(88.9)	(42.9)	(38.1)	(1.81)
****FFA	1¼ MPT	F	1¼ FPT	9	—	1%	—	—	2 ¹³ /16	—	1 ¹¹ / ₁₆	1¾	4¼
	(32)		(32)	(228.6)		(47.6)			(71.4)		(42.9)	(44.5)	(1.93)
****GFA	1¼ MPT	G	1½ FPT	9 ¹¹ / ₁₆	_	2 ¹ ⁄⁄8	1 ¹¹ / ₁₆	_	3	3 ¾	1 ¹¹ / ₁₆	1%	7
	(32)		(40)	(246.1)		(54.0)	(42.9)		(76.2)		(42.9)	(47.6)	(3.18)
****GGA	1½ MPT	G	1½ FPT	9 ¹¹ / ₁₆	—	21⁄8	—	—	3	—	1 ¹¹ / ₁₆	21/16	7¼
	(40)		(40)	(246.1)		(54.0)			(76.2)		(42.9)	(52.4)	(3.29)
****HGA	1½ MPT	Н	2 FPT	121⁄8	—	2%	2 ¹ /16	—	3½	4 ¹¹ ⁄ ₁₆	2¾	21⁄4	13½
	(40)		(50)	(308.0)		(65.1)	(52.4)		(88.9)	(119.1)	(69.9)	(57.2)	(6.12)
****HHA	2 MPT	Н	2 FPT	121/8	_	2 %	_	_	3½	_	2 ³ /4	2%	13¾
	(50)		(50)	(308.0)		(65.1)			(88.9)		(69.9)	(65.1)	(6.24)
****JHA	2 MPT	J	2½ FPT	135/16	_	31⁄8	2½		3¾	5	2¾	2 ³ ⁄ ₄	17½
	(50)		(65)	(338.1)		(79.4)	(63.5)		(95.3)	(127.0)	(69.9)	(69.9)	(7.94)
****JJJA	2½ MPT	J	2½ FPT	135/16	_	31⁄8	_	_	3¾	_	2¾	3	17¾
	(65)		(65)	(338.1)		(79.4)			(95.3)		(69.9)	(76.2)	(8.05)
*Accurate t	0 1/0"				(1)			noion wh	on lover in		to monue	llu anarat	


*Accurate to ±1/8".

**** Use appropriate Model Number.

⁽¹⁾ Add 50% to D Dimension when lever is pulled out to manually operate valve. ⁽²⁾ Outlet connections do not apply for **AT top outlet valve. **BRONZE SERIES**

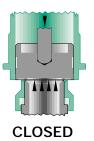
FIGURE 31 / 41 BRONZE SERIES SOFT SEATS

Safety Valves with metal seats will start to leak at 90% of set pressure. A Spence Safety Valve equipped with a soft seat seals on both the metal and soft seats (see illustration). As a result, it will not begin to leak until system pressure reaches 95% of set pressure, minimizing system energy loss.

The o-rings in standard soft seat safety valves tend to blow out during discharge. Spence Soft Seat Safety Valves utilize a flat soft seat insert in the disc assembly of the valve that stays in place during operation, thus providing hassle-free operation.

There are many troublesome applications where using a Spence Soft Seat Safety Valve can reduce costly downtime and repair costs. Consider a Spence Soft Seat Safety Valve for:

- Operating very close to set pressure
- Heavy vibration
- Hard-to-hold fluids
- Occasional foreign particles
- Icing problems
- Pipe strain due to excessive discharge


SERVICE RECOMMENDATIONS*

WET20 to 422	Soft Seat 2°F (-29 to 216°C)		Viton Soft Seat -20 to 400°F (-29 to 204°C)					
	0°F (-29 to 121°C)	AIR Bonzoic Acid	Dowtherm A	lodine				
Acetone Acetylene Gas Beer Bleach Liquor Brake Fluid Calcium Chloride Carbon Monoxide Carbonic Acid Citric Acid	Freon 22 Hydrazine Lindol Hydraulic Fluid Lye Methanol Methyl Alcohol Methyl Butyl Ketone Nitrogen STEAM	Benzoic Acid Benzul Alcohol Butane Butyl Alcohol Carbon Disulfide Carbon Tetrachloride Castor Oil Chlorine Chromic Acid	Gasoline Glucose Glycerin	Kerosene Linseed Oil Methane Mineral Oils Natural Gas Petroleum Oil Propane Propyl Alcohol Propylene				
Denatured Alcohol Ethylene Diamine	Sulfur Hexafluoride WATER	Corn Oil Crude Oil Diesel Oil	Helium Hydraulic Oil Hydrogen Gas	Sulfur Dioxide Turpentine				

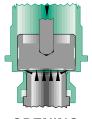
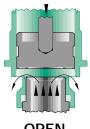

*These recommendations should be used as a guide only. It is the sole responsibility of the user to select suitable materials.

FIGURE 31 BRONZE SERIES DUAL RING CONTROL

Safety Valves are pressure relief devices actuated by inlet static pressure and characterized by rapid opening or "pop" action. The difference between Safety Valves from different manufacturers is how well they do this. Spence Figure 31 Safety Valves have Dual Ring Control which allows for finer adjustment of the "popping" action and length of "blowdown". This allows exceptional flow efficiency and maximum lifting force while minimizing system energy loss.



System pressure is pushing upward against the disk which is held closed by the downward force of the spring against the spindle.

OPENING

When system pressure rises above the set pressure of the spring, the disc begins to lift. This simmer/warn stage allows system pressure to enter the "huddling chamber" where it acts on a larger, secondary area of the disc. This magnified force causes the valve to "pop" open.

OPEN

As pressure increases, the disc continues to lift until fully open. When pressure is reduced to a level below the set point of the valve, the spring force against the spindle will snap shut the disc.

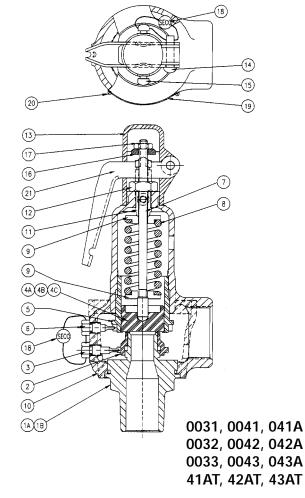
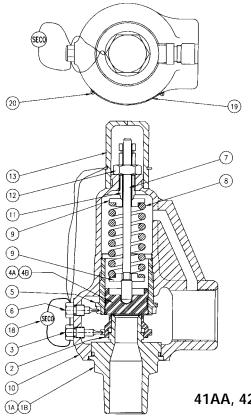


FIGURE 31 / 41 BRONZE SERIES

FIGURE 31 / 41 BRONZE SERIES


MATERIALS OF CONSTRUCTION

Ref	Part Name	Material
1A	Base/Nozzle - Bronze	Brass or Brz ASTM B283 or
		ASME SB62
1B	Base/Nozzle - SST	316 SST ASTM A276
2	Base Ring	Brass or Brz ASTM B283 or ASTM B62
3	Nozzle Ring Set Screw	Brass ASTM B16
4A	Disc - Bronze Metal	Brass or Brz ASTM B16 or ASTM B62
4B	Disc - SST Metal	316 SST ASTM A276
4C	Disc Assembly - Soft	Brass or Brz - EPDM/Viton
5	Guide Ring	Brass or Brz B283 or B584
6	Guide Ring Set Screw	Brass ASTM B16
7	Spindle	Steel ASTM A108
8	Spring	302 SST/17-7 SST
9	Spring Washer	Steel ASTM A108
10	Bonnet†	Cast Brz ASME SB62
11	Adjusting Bolt	Brass ASTM B16
12	Adjusting Bolt Locknut	Steel (Plated) SAE J995 GRD 2
13	Lifting Cap	Zinc Alloy
14	Lifting Cap Pin	Steel
15	Lifting Cap Lockscrew	Plated Steel
16	Spindle Nut	Steel ASTM
17	Spindle Nut Locknut	Plated Steel
18	Seal and Wire	Lead and SST
19	Nameplate	SST
20	Drive Screw	SST
21	Lever	Steel (Plated)

†41AT, 42AT, 43AT denoted by dotted line.

Ref	Part Name	Material
1A	Base/Nozzle - Bronze	Brass ASTM B283
1B	Base/Nozzle - SST	316 SST ASTM A276
2	Base Ring	Brass ASTM B283
3	Nozzle Ring Set Screw	Brass ASTM B16
4A	Disc - Bronze Metal	Brass ASTM B16
4B	Disc - SST Metal	316 SST ASTM A276
5	Guide Ring	Brass B283
6	Guide Ring Set Screw	Brass ASTM B16
7	Spindle	Steel ASTM A108
8	Spring	302 SST/17-7 SST
9	Spring Washer	Steel ASTM A108
10	Bonnet	Cast Brz ASME SB62
11	Adjusting Bolt	Brass ASTM B16
12	Adjusting Bolt Locknut	Steel (Plated) SAE J995 GRD 2
13	Сар	Brass ASTM B16
18	Seal and Wire	Lead and SST
19	Nameplate	SST
20	Drive Screw	SST

SATURATED STEAM CAPACITY CHART BRONZE MODELS 31, 32, 33

ASME Section I V" 90% rated at 3% Overpressure LBS/HR (KGS/HR) Flow Coefficient = .9 x .975 = .878

LBS/HR

KGS/HR

			53/116			
Set				Area in ²		
Pressure	D	E	F	G	Н	J
PSIG	0.1188	0.2116	0.3318	0.5424	0.8479	1.391
10 *	143	255	400	654	1023	1678
15	170	303	475	776	1213	1991
20	197	351	550	899	1405	2305
25	224	398	625	1021	1596	2619
30	250	446	700	1144	1788	2933
35	277	494	774	1266	1979	3247
40	304	542	849	1388	2171	3561
45	331	589	924	1511	2362	3875
50	358	637	999	1633	2553	4189
55	385	685	1074	1756	2745	4503
60	411	733	1149	1878	2936	4817
65	438	780	1224	2001	3128	5131
70	466	829	1300	2126	3323	5451
75	493	878	1377	2252	3520	5774
80	521	928	1455	2378	3717	6098
85	548	977	1532	2504	3914	6421
90	576	1026	1609	2630	4111	6745
95	604	1075	1686	2756	4308	7068
100	631	1124	1763	2882	4506	7392
105	659	1174	1840	3008	4703	7715
110	687	1223	1917	3134	4900	8038
115	714	1272	1995	3261	5097	8362
120	742	1321	2072	3387	5294	8685
125	769	1370	2149	3513	5491 5400	9009
130 125	797	1420	2226	3639	5688 5004	9332
135 140	825	1469 1510	2303	3765	5886	9655
140	852 880	1518 1567	2380 2457	3891 4017	6083 6280	9979 10302
145	908	1616	2437	4017	6477	10502
155	900 935	1666	2612	4143	6674	10020
160	935 963	1715	2689	4209	6871	11273
165	990	1764	2766	4522	7068	11596
170	1018	1813	2843	4648	7266	11919
175	1046	1862	2920	4774	7463	12243
180	1073	1912	2997	4900	7660	12566
185	1101	1961	3075	5026	7857	12890
190	1128	2010	3152	5152	8054	13213
195	1156	2059	3229	5178	8251	13537
200	1184	2108	3306	5404	8448	13860
205	1211	2158	3383	5531	8646	14183
210	1239	2207	3460	5657	8843	14509
215	1267	2256	3538	5783	9040	14830
220	1294	2305	3615	5909	9237	15154
225	1322	2354	3692	6035	9434	15477
230	1349	2404	3769	6161	9631	15800
235	1377	2453	3846	6287	9829	16124
240	1405	2502	3923	6413	10026	16447
245	1432	2551	4000	6540	10223	16771
250	1460	2600	4078	6666	10420	17094
255	1488	2650	4155	6792	10617	17418
260	1515	2699	4232	6918	10814	17741
265	1543	2748	4309	7044	11011	18064
270	1570	2797	4386	7470	11209	18388
275	1598	2846	4463	7296	11406	18711
280	1626	2896	4540	7422	11603	19035
285	1653	2945	4618	7548	11800	19358
290	1681	2994	4695	7675	11997	19682
295	1709	3043	4772	7801	12194	20005
300	1736	3092	4849	7927	12391	20328
1.0	6	10	15	25	39	65

KGS/HR										
Set				Area cm ²						
Pressure	D	E	F	G	Н	J				
Barg	.766	1.365	2.141	3.499	5.47	8.974				
0.4*	55	97	153	250	391	641				
0.6*	62	110	173	282	441	723				
0.8*	69	123	192	314	491	806				
1*	76	135	212	346	542	889				
1.2	83	148	232	379	592	971				
1.4	90	160	251	411	642	1054				
1.6	97	173	271	443	693	1136				
1.8	104	185	291	475	743	1219				
2	111	198	310	508	793	1302				
2.2	118	211	330	540	844	1384				
2.4	125	223	350	572	894	1467				
2.6 2.8	132 139	236	370	604	944 995	1549				
2.8		248	389	636		1632 1715				
3.2	146 150	261	409	669 701	1045 1005	1715				
3.2 3.4	153 161	273 286	429 448	701 733	1095 1146	1880				
3.4 3.6	161	280	448	733	1140	1962				
3.0	100	311	400	705	1247	2045				
3.0 4	175	324	400 507	830	1247	2045				
4.2	189	336	527	862	1347	2120				
4.4	196	349	547	894	1398	2293				
4.6	203	361	567	926	1448	2375				
4.8	210	374	587	959	1500	2460				
5	217	387	607	993	1552	2545				
5.2	225	400	627	1026	1603	2631				
5.4	232	413	648	1059	1655	2716				
5.6	239	426	668	1092	1707	2801				
5.8	246	439	688	1125	1759	2886				
6	254	452	709	1158	1811	2971				
6.5	272	484	759	1241	1941	3184				
7	290	517	810	1324	2070	3396				
7.5	308	549	861	1407	2200	3609				
8	326	581	912	1490	2329	3822				
8.5	345	614	962	1573	2459	4034				
9	363	646	1013	1656	2589	4247				
9.5	381	678	1064	1739	2718	4460				
10	399	711	1114	1822	2848	4672				
10.5	417	743	1165	1905	2978	4885				
11	435	775	1216	1988	3107	5098				
11.5	454	808	1267	2071	3237	5310				
12	472	840	1317	2154	3367	5523				
12.5	490 E00	873	1368	2237	3496	5736 5948				
13 13.5	508 526	905 937	1419	2319	3626	5948 6161				
13.5 14	526 544	937	1470 1520	2402 2485	3756 3885	6374				
14	544 563	1002	1520	2485 2568	3885 4015	6586				
14.5	503 581	1002	1622	2651	4015	6799				
15.5	599	1034	1673	2031	4144	7012				
16	617	1007	1723	2817	4404	7012				
16.5	635	1131	1723	2900	4533	7437				
10.5	653	1164	1825	2983	4663	7650				
17.5	672	1196	1875	3066	4793	7862				
18	690	1228	1926	3149	4922	8075				
18.5	708	1261	1977	3232	5052	8288				
19	726	1293	2028	3315	5182	8500				
19.5	744	1325	2078	3398	5311	8713				
20	762	1358	2129	3481	5441	8926				
20.5	780	1390	2180	3563	5571	9139				
21	799	1423	2231	3646	5700	9351				
21.5	817	1455	2281	3729	5830	9564				
0.1	3.6	6.4	10.1	16.6	25.9	42.5				

VALVES

* Pressure settings below 15 PSIG (1.034 barg) are non code.

PENCE

SATURATED STEAM CAPACITY CHART BRONZE MODELS 41, 42, 43

ASME Section VIII "UV" 90% rated at 10% Overpressure LBS/HR (KGS/HR) Flow Coefficient = .9 x .975 = .878 LBS/HR KGS/HR

Set D E F G H J PSIG 0.1188 0.2116 0.3184 0.5424 0.8479 1.391 10* 149 265 416 679 1062 1742 15 176 313 491 802 1254 2057 20 203 361 566 925 1445 2371 25 229 409 641 1047 1637 286 300 256 456 716 1170 1829 3000 35 286 509 788 1305 2421 4384 40 315 562 881 1440 2551 4335 5763 50 374 667 1046 1709 2672 4384 55 403 877 1376 2249 3516 5768 75 522 930 1458 2354 4714 6805		Pressure D E F G H J PSIG 0.1188 0.2116 0.3318 0.5424 0.8479 1.39 10* 149 265 416 679 1062 174 15 176 313 491 802 1254 205 20 203 361 566 925 1445 237 25 229 409 641 1047 1637 268 30 256 456 716 1170 1829 300 35 286 509 798 1305 2040 334										
PSIG0.11880.21160.33180.54240.84791.39110*1492654166791062174215176313491802125420572030335656692514452371252294096411047163726863025645671611701829300035286509798130520403346403155628814042251393550374667104617092672438455404720112818442833473060543477212111979309456767552293014582384372761148055598315542305441868059061110881706278943597151956401140178829234570749710067011931811346354148881120788135121183463541488811207881351211834635414888112078814042201359656249272155818155923385359733158415096617192666440766901204 <tr< th=""><th>Set</th><th></th><th></th><th>Orifice</th><th>Area in²</th><th></th><th></th></tr<>	Set			Orifice	Area in ²							
10* 149 265 416 679 1062 1742 15 176 313 491 802 1254 2057 20 203 361 566 925 1445 2371 25 229 409 641 1047 1637 2686 300 256 456 716 1170 1829 3000 35 286 509 798 1305 2040 3346 40 315 562 881 1440 2251 3692 455 345 614 709 172 433 4730 60 434 772 1211 1979 3094 5076 55 404 700 433 877 1376 2249 3516 5768 55 581 1035 1623 2654 4148 6805 90 611 1088 1706 2789 4359 71												
15 176 313 491 802 1254 2057 20 203 361 566 925 1445 2371 25 229 409 641 1047 1637 2686 30 256 456 716 1170 1829 300 35 286 509 798 1305 2040 3346 40 315 562 881 1440 2251 3692 45 345 647 1046 1709 2672 4384 50 374 667 1046 1709 2042 576 65 463 825 1293 2114 3305 5422 70 493 877 1376 2249 3516 7568 75 522 993 1458 2384 3727 6114 80 551 1035 1673 3193 4992 8189 100<	PSIG		0.2116	0.3318			1.391					
20 203 361 566 925 1445 2371 25 229 409 641 1047 1637 2686 30 256 456 716 1170 1829 3000 35 286 509 798 1305 2040 3346 40 315 562 881 1440 2251 3692 45 345 614 963 1575 2461 4038 50 474 772 1211 1979 3094 5576 645 463 825 1293 2114 3305 5422 70 493 877 1376 2249 3516 5768 75 522 930 1458 2334 3727 6114 855 581 1035 1623 2654 4148 6805 90 611 1088 1706 2789 4523 3733 5835												
25 229 409 641 1047 1637 2686 30 256 456 716 1170 1829 3000 35 286 509 798 1305 2040 3346 40 315 562 881 1440 2251 3692 45 3345 614 903 1575 2461 4038 50 374 667 1046 1709 2672 4384 55 404 720 1128 1844 2883 4730 60 433 825 1293 2114 3305 5422 75 522 930 1458 2384 3727 6114 80 552 983 1511 2519 3937 6460 96 611 1035 1623 2654 4148 6805 90 611 1035 1623 3193 4992 8189 <		-	313			1254						
30 256 456 716 1170 1829 3000 35 286 509 788 1305 2040 3346 40 315 562 881 1440 2251 3692 45 345 614 963 1575 2461 4038 55 404 720 1128 1844 2833 4730 60 434 772 1211 1979 3094 5576 65 463 825 1293 2114 3305 5422 70 493 877 1376 2249 3516 576 75 552 983 1541 2519 3977 6460 855 581 1035 1623 2654 4148 6805 90 611 1088 1706 2789 359 7151 95 640 1140 1788 3133 5835 5573 <						1445	2371					
35 286 509 798 1305 2040 3346 40 315 562 881 1440 2251 3692 45 334 667 1046 1709 2672 4384 50 374 667 1046 1709 2672 4384 60 434 772 1211 1979 3094 5076 65 463 825 1293 2114 3305 5422 70 493 877 1376 2249 3516 5768 75 522 930 1458 2384 3727 6114 80 581 1035 1623 2654 4148 6805 90 611 1088 1706 2789 4359 7151 95 640 1140 1788 2923 4570 7497 100 670 1133 1871 1515 3193 4992 8189		229	409	641	1047	1637	2686					
40 315 562 881 1440 2251 3692 45 335 614 963 1575 2461 4038 50 374 667 1046 1709 2672 4384 55 404 772 1211 1979 3094 5576 65 463 825 1293 2114 3305 5422 70 493 877 1376 2249 3516 5768 75 522 930 1458 2384 3727 6114 80 551 1035 1623 2654 4359 7151 95 640 1140 1788 2923 4570 7497 100 670 1193 1811 3058 4781 7843 105 729 1248 2033 3333 5835 573 100 670 1193 1811 3463 5414 8881	30	256	456	716	1170	1829	3000					
45 345 614 963 1575 2461 4038 50 374 667 1046 1709 2672 4384 55 404 720 1128 1844 2883 4730 60 434 772 1211 1979 3094 5076 65 463 825 1293 2114 3305 5422 70 493 877 1376 2249 3516 5768 75 522 930 1458 2384 3727 6114 80 552 983 1541 2519 3937 6460 95 640 1108 1762 2789 3559 7151 95 1670 1733 1871 3058 4781 7843 105 699 1246 1953 3133 4992 8189 110 729 1298 2036 3333 5835 5953	35	286	509	798	1305	2040	3346					
50 374 667 1046 1709 2672 4384 55 404 720 1128 1844 2833 4730 60 434 772 1211 1979 3094 5076 65 463 825 1293 2114 3305 5422 75 522 930 1458 2384 3727 6114 80 552 983 1541 2519 3937 6460 85 551 1035 1623 2654 4148 6605 90 611 1088 1706 2789 4359 7151 95 640 1140 1788 2923 4570 7497 100 670 1173 1871 3058 544 881 105 669 1246 1953 3133 4992 8189 110 729 1298 2036 3328 5033 5835 5973 <td>40</td> <td>315</td> <td>562</td> <td>881</td> <td>1440</td> <td>2251</td> <td></td>	40	315	562	881	1440	2251						
55 404 720 1128 1844 2883 4730 60 434 772 1211 1979 3094 5076 65 463 825 1293 2114 3305 5422 70 493 877 1376 2249 3516 5768 75 522 930 1458 2384 3727 6114 80 551 1035 1623 2654 4148 6805 90 611 1088 1706 2789 4359 7151 95 640 1140 1788 2923 4570 7497 100 670 1193 1871 3058 4781 7843 105 699 1246 1953 3133 4992 8189 115 758 1351 2118 3463 5414 8881 120 788 1404 201 3598 5624 927 <tr< td=""><td>45</td><td>345</td><td>614</td><td>963</td><td>1575</td><td>2461</td><td>4038</td></tr<>	45	345	614	963	1575	2461	4038					
60 434 772 1211 1979 3094 5076 65 463 825 1293 2114 3305 5422 70 493 877 1376 2249 3516 5768 75 522 930 1458 2384 3727 6114 80 552 983 1541 2519 3937 6460 85 581 1035 1623 2654 4148 805 95 640 1140 1788 2923 4570 7497 100 670 1193 1871 3058 4781 7843 105 699 1246 1953 3193 4992 8189 110 729 1298 2036 3288 5031 8535 155 753 1351 2118 3463 5414 8881 120 788 1404 201 3598 573 1303	50	374	667	1046	1709	2672	4384					
65 463 825 1293 2114 3305 5422 70 493 877 1376 2249 3516 5768 75 522 930 1458 2384 3727 6114 80 552 983 1541 2519 3937 6460 85 581 1035 1623 2654 4148 6805 90 611 1088 1706 2789 4359 7151 95 640 1140 1788 2023 4570 7497 100 670 1193 1871 3058 4781 7843 105 699 1246 1953 3193 4992 8189 110 729 1298 2036 3328 5203 8535 130 847 1509 2366 3686 6046 9919 135 877 1561 2448 4003 6257 10265	55	404	720	1128	1844	2883	4730					
70 493 877 1376 2249 3516 5768 75 522 930 1458 2384 3727 6114 80 552 983 1541 2519 3937 6460 85 581 1035 1623 2654 4148 6805 90 611 1088 1706 2789 4359 7151 95 640 1140 1788 2923 4781 7843 105 699 1246 1953 3193 4992 8189 110 729 1298 2036 3328 5203 8535 115 758 1351 2118 3463 5414 8881 120 788 1404 201 3598 5624 9227 135 877 1509 2361 4137 6468 10611 145 936 1667 2614 4272 6679 10957	60	434	772	1211	1979	3094	5076					
75 522 930 1458 2384 3727 6114 80 552 983 1541 2519 3937 6460 85 581 1035 1623 2654 4148 6805 90 611 1088 1706 2789 4359 7151 95 640 1140 1788 2923 4570 7497 100 679 1246 1953 3193 4992 8189 110 729 1298 2036 3328 5203 8535 115 758 1351 2118 3463 5414 8881 120 788 1404 201 3598 5624 927 135 877 1561 2448 4003 657 10265 140 976 1647 2614 4272 6679 10957 150 965 1719 2696 4407 6890 11303	65	463	825	1293	2114	3305	5422					
80 552 983 1541 2519 3937 6460 85 581 1035 1623 2654 4148 6805 90 611 1088 1706 2789 4359 7151 95 640 1140 1788 2923 4570 7497 100 670 1193 1871 3058 4781 7843 105 699 1246 1953 3133 4992 8189 110 729 1298 2036 3328 5203 8535 115 758 1351 2118 3463 5414 8881 120 788 1404 2001 3598 5624 9227 125 818 1456 2283 3733 5835 9573 130 847 1509 2366 3868 6046 919 135 877 1561 2448 4003 6257 10265 <td>70</td> <td>493</td> <td>877</td> <td>1376</td> <td>2249</td> <td>3516</td> <td>5768</td>	70	493	877	1376	2249	3516	5768					
80 552 983 1541 2519 3937 6460 85 581 1035 1623 2654 4148 6805 90 611 1088 1706 2789 4359 7151 95 640 1140 1788 2923 4570 7497 100 670 1193 1871 3058 4781 7843 105 699 1246 1953 3133 4992 8189 110 729 1298 2036 3328 5203 8535 115 758 1351 2118 3463 5414 8881 120 788 1404 2001 3598 5624 9227 125 818 1456 2283 3733 5835 9573 130 847 1509 2366 3868 6046 919 135 877 1561 2448 4003 6257 10265 <td>75</td> <td>522</td> <td>930</td> <td>1458</td> <td>2384</td> <td>3727</td> <td>6114</td>	75	522	930	1458	2384	3727	6114					
85 581 1035 1623 2654 4148 6805 90 611 1088 1706 2789 4359 7151 95 640 1140 1788 2923 4570 7497 100 670 1193 1871 3058 4781 7843 105 699 1246 1953 3193 4992 8189 110 729 1298 2036 3328 5203 8535 115 758 1351 2118 3463 5414 8811 120 788 1404 2201 3598 5624 9227 135 877 1561 2448 4003 6257 10265 140 906 1614 2531 4137 6468 10611 145 936 1667 2614 4272 6679 10957 150 965 1719 2696 4407 7331 10303	80			1541								
90 611 1088 1706 2789 4359 7151 95 640 1140 1788 2923 4570 7497 100 670 1193 1871 3058 4781 7843 105 699 1246 1953 3193 4992 8189 110 729 1298 2036 3328 5203 8535 115 758 1351 2118 3463 5414 8881 120 788 1404 2201 3598 5624 9227 125 818 1456 2283 3733 5835 9573 130 847 1509 2366 3868 6046 919 135 877 1551 2448 4003 6257 10265 140 906 1614 2531 4137 6468 10611 145 936 1667 2614 4272 6679 10957												
95640114017882923457074971006701193187130584781784310569912461953319349928189110729129820363328520385351157581351211834635414888112078814042201359856249227125818145622833733583595731308471509236638686046991913587715612448400362571026514090616142531413764681061114593616772696440768901130315599517722779454271001164816010241825286146777311119941651054187729444812752212340170108319303026494777331268617511131982310950827944130321801143203531915217815513378185117220883274535283661372419012022140335654868577140701951231219334395621878714416200126122463521												
100 670 1193 1871 3058 4781 7843 105 699 1246 1953 3193 4992 8189 110 729 1298 2036 3328 5203 8535 115 758 1351 2118 3463 5414 8881 120 788 1404 2201 3598 5624 9227 125 818 1456 2283 3733 5835 9573 130 847 1509 2366 3868 6046 9919 135 877 1561 2448 4003 6257 10265 140 906 1614 2531 4137 6468 10611 145 936 1677 2479 4407 6890 11303 155 995 1772 2779 4542 7100 11648 160 1024 1825 2861 4677 7331 1994 <td></td> <td colspan="2">95 640 1140</td> <td></td> <td></td> <td></td> <td></td>		95 640 1140										
105 699 1246 1953 3193 4992 8189 110 729 1298 2036 3328 5203 8535 115 758 1351 2118 3463 5414 8881 120 788 1404 2201 3598 5624 9227 125 818 1456 2283 3733 5835 9573 130 847 1509 2366 3868 6046 9919 135 877 1561 2448 4003 6257 10265 140 906 1614 2531 4137 6468 10611 145 936 1667 2614 4272 6679 10957 150 965 1719 2696 4407 6890 11303 155 995 1772 2779 4542 7100 11648 160 1024 1825 2861 4677 7311 1194 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
110 729 1298 2036 3328 5203 8535 115 758 1351 2118 3463 5414 8881 120 788 1404 2201 3598 5624 9227 125 818 1456 2283 3733 5835 9573 130 847 1509 2366 3868 6046 9919 135 877 1561 2448 4003 6257 10265 140 906 1614 2531 4137 6468 10611 145 936 1667 2614 4272 6679 10957 150 965 1719 2696 4407 6890 11303 155 995 1772 2779 4542 7100 11648 160 1024 1825 2861 4677 7311 11994 165 1073 1133 1930 3026 4947 7733												
1157581351211834635414888112078814042201359856249227125818145622833733583595731308471509236638686046991913587715612448400362571026514090616142531413764681061114593616672614427266791095715096517192696440768901130315599517722779454271001164816010241825286146777311119941651054187729444812752212340170108319303026494777331268617511131982310950827944130321801143203531915217815513378185117220883274535283661372419012022140335654868577140701951231219334395621878714416200126122463521575689981476220512902298360458919209151082101320235136866026942015454215134924033769<												
12078814042201359856249227125818145622833733583595731308471509236638686046991913587715612448400362571026514090616142531413764681061114593616672614427266791095715096517192696440768901130315599517722779454271001164816010241825286146777311119941651054187729444812752212340170108319303026494777331268617511131982310950827944130321801143203531915217815513378185117220883274535283661372419012022140335654868577140701951231219334395621878714416200126122463521575689981476221013202351368660269420154542151349240337696161963115800220137924563851629698421614622514082509393												
12581814562283373358359573130847150923663868604699191358771561244840036257102651409061614253141376468106111459361667261442726679109571509651719269644076890113031559951772277945427100116481601024182528614677731111994165105418772944481275221234017010831930302649477733126861751113198231095082794413032180114320353191521781551337818511722088327453528366137241901202214033565486857714070195123121933439562187871441620012612246352157568998147622051290229836045891920915108210132023513686602694201545421513492403376961619631158002201379245638516296984216146225514682614												
130 847 1509 2366 3868 6046 9919 135 877 1561 2448 4003 6257 10265 140 906 1614 2531 4137 6468 10611 145 936 1667 2614 4272 6679 10957 150 965 1719 2696 4407 6890 11303 155 995 1772 2779 4542 7100 11648 160 1024 1825 2861 4677 7311 11994 165 1054 1877 2944 4812 7522 1230 170 1083 1930 3026 4947 7733 12686 175 1113 1982 3109 5082 7944 13032 180 1143 2035 3191 5217 8155 13378 185 1172 2088 3274 5352 8366 <												
1358771561244840036257102651409061614253141376468106111459361667261442726679109571509651719269644076890113031559951772277945427100116481601024182528614677731111994165105418772944481275221234017010831930302649477733126861751113198231095082794413032180114320353191521781551337818511722088327453528366137241901202214033565486857714070195123121933439562187871441620012612246352157568998147622051290229836045891920915108210132023513686602694201545421513492403376961619631158002201379245638516296984216146225140825093934643110053164922301438256140166566102631683724515272719 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
140906161425314137646810611145936166726144272667910957150965171926964407689011303155995177227794542710011648160102418252861467773111199416510541877294448127522123401701083193030264947773312686175111319823109508279441303218011432035319152178155133781851172208832745352836613724190120221403356548685771407019512312193343956218787144162001261224635215756899814762205129022983604589192091510821013202351368660269420154542151349240337696161963115800220137924563851629698421614622514082509393464311005316492230143825614016656610263168372451527271942646970108061787525015862824 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
14593616672614427266791095715096517192696440768901130315599517722779454271001164816010241825286146777311119941651054187729444812752212340170108319303026494777331268617511131982310950827944130321801143203531915217815513378185117220883274535283661372419012022140335654868577140701951231219334395621878714416200126122463521575689981476220512902298360458919209151082101320235136866026942015454215134924033769616196311580022013792456385162969842161462251408250939346431100531649223014382561401665661026316837245152727194264697010896178752501556272243467105111071822125515862824												
15096517192696440768901130315599517722779454271001164816010241825286146777311119941651054187729444812752212340170108319303026494777331268617511131982310950827944130321801143203531915217815513378185117220883274535283661372419012022140335654868577140701951231219334395621878714416200126122463521575689981476220512902298360458919209151082101320235136866026942015454215134924033769616196311580022013792456385162969842161462251408250939346431100531649223014382561401665661026316837245155627724346700108651752924515662772434671001137182212551586282444297240113181856726016152970												
15599517722779454271001164816010241825286146777311119941651054187729444812752212340170108319303026494777331268617511131982310950827944130321801143203531915217815513378185117220883274535283661372419012022140335654868577140701951231219334395621878714416200126122463521575689981476220512902298360458919209151082101320235136866026942015454215134924033769616196311580022013792456385162969842161462251408250939346431100531649223014382561401665661026316837245155627724346770010861787525015562772434671001107182212551586282444297240113181856726016152877451173751159189132651645293												
160 1024 1825 2861 4677 7311 11994 165 1054 1877 2944 4812 7522 12340 170 1083 1930 3026 4947 7733 12686 175 1113 1982 3109 5082 7944 13032 180 1143 2035 3191 5217 8155 13378 185 1172 2088 3274 5352 8366 13724 190 1202 2140 3356 5486 8577 14070 195 1231 2193 3439 5621 8787 14416 200 1261 2246 3521 5756 8998 14762 205 1290 2298 3604 5891 9209 15108 210 1320 2351 3686 6026 9420 15454 215 1349 2403 3769 6161 9631												
165 1054 1877 2944 4812 7522 12340 170 1083 1930 3026 4947 7733 12686 175 1113 1982 3109 5082 7944 13032 180 1143 2035 3191 5217 8155 13378 185 1172 2088 3274 5352 8366 13724 190 1202 2140 3356 5486 8577 14070 195 1231 2193 3439 5621 8787 14416 200 1261 2246 3521 5756 8998 14762 205 1290 2298 3604 5891 9209 15108 210 1320 2351 3686 6026 9420 15454 215 1349 2403 3769 6161 9631 15800 220 1379 2456 3851 6296 9842												
170108319303026494777331268617511131982310950827944130321801143203531915217815513378185117220883274535283661372419012022140335654868577140701951231219334395621878714416200126122463521575689981476220512902298360458919209151882101320235136866026942015454215134924033769616196311580022013792456385162969842161462251408250939346431100531649223014382561401665661026316837235146826144099670010474171832401497266741816835106851752924515272719426469701089617875250156627724346710011318185672601615287745117375115291891326516452930459475101174019259270167429824676764511950196052751704												
1751113198231095082794413032180114320353191521781551337818511722088327453528366137241901202214033565486857714070195123121933439562187871441620012612246352157568998147622051290229836045891920915108210132023513686602694201545421513492403376961619631158002201379245638516296984216146225140825093934643110053164922301438256140166566102631683723514682614409967001047417183240149726674181683510685175292451527271942646970108961787525015562772434671051110718221255158628244429724011318185672601615293045947510117401925927016742982467676451195019605275170430354759778012161199512801733 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
180 1143 2035 3191 5217 8155 13378 185 1172 2088 3274 5352 8366 13724 190 1202 2140 3356 5486 8577 14070 195 1231 2193 3439 5621 8787 14416 200 1261 2246 3521 5756 8998 14762 205 1290 2298 3604 5891 9209 15108 210 1320 2351 3686 6026 9420 1544 215 1349 2403 3769 6161 9631 15800 220 1379 2456 3851 6296 9842 16146 225 1408 2509 3934 6431 10053 16492 230 1438 2561 4016 6566 10263 16837 2435 1527 2719 4264 6970 10896 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
185 1172 2088 3274 5352 8366 13724 190 1202 2140 3356 5486 8577 14070 195 1231 2193 3439 5621 8787 14416 200 1261 2246 3521 5756 8998 14762 205 1290 2298 3604 5891 9209 15108 210 1320 2351 3686 6026 9420 15454 215 1349 2403 3769 6161 9631 15800 220 1379 2456 3851 6296 9842 16146 225 1408 2509 3934 6431 10053 16492 230 1438 2561 4016 6566 10263 16837 2435 1527 2719 4264 6970 10896 17875 250 1556 2772 4346 7105 11107 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
1901202214033565486857714070195123121933439562187871441620012612246352157568998147622051290229836045891920915108210132023513686602694201545421513492403376961619631158002201379245638516296984216146225140825093934643110053164922301438256140166566102631683723514682614409967001047417183240149726674181683510685175292451527271942646970108961787525015562772434671051110718221255158628244429724011318185672601615287745117375115291891326516452930459475101174019259270167429824676764511950196052751763314049248049125832064329017933193500781841279420989295182232455089831913005213353001852<												
19512312193343956218787144162001261224635215756899814762205129022983604589192091510821013202351368660269420154542151349240337696161963115800220137924563851629698421614622514082509393464311005316492230143825614016656610263168372351468261440996700104741718324014972667418168351068517529245152727194264697010896178752501556277243467105111071822125515862824442972401131818567260161528774511737511529189132651645293045947510117401925927016742982467676451195019605275170430354759778012161199512801733308848417914123722029728517633140492480491258320643290179331935007818412794209892951822												
200 1261 2246 3521 5756 8998 14762 205 1290 2298 3604 5891 9209 15108 210 1320 2351 3686 6026 9420 15454 215 1349 2403 3769 6161 9631 15800 220 1379 2456 3851 6296 9842 16146 225 1408 2509 3934 6431 10053 16492 230 1438 2561 4016 6566 10263 16837 235 1468 2614 4099 6700 10474 17183 240 1497 2667 4181 6835 10685 17529 245 1527 2719 4264 6970 10896 17875 250 1556 2772 4346 7105 11107 18221 255 1586 2824 4429 7240 11318												
205 1290 2298 3604 5891 9209 15108 210 1320 2351 3686 6026 9420 15454 215 1349 2403 3769 6161 9631 15800 220 1379 2456 3851 6296 9842 16146 225 1408 2509 3934 6431 10053 16492 230 1438 2561 4016 6566 10263 16837 235 1468 2614 4099 6700 10474 17183 240 1497 2667 4181 6835 10685 17529 245 1527 2719 4264 6970 10896 17875 250 1556 2772 4346 7105 11107 18221 255 1586 2824 4429 7240 11318 18567 260 1615 2877 4511 7375 1152												
210 1320 2351 3686 6026 9420 15454 215 1349 2403 3769 6161 9631 15800 220 1379 2456 3851 6296 9842 16146 225 1408 2509 3934 6431 10053 16492 230 1438 2561 4016 6566 10263 16837 235 1468 2614 4099 6700 10474 17183 240 1497 2667 4181 6835 10685 17529 245 1527 2719 4264 6970 10896 17875 250 1556 2772 4346 7105 11107 18221 255 1586 2824 4429 7240 11318 18567 260 1615 2877 4511 7375 11529 18913 265 1645 2930 4594 7510 117												
2151349240337696161963115800220137924563851629698421614622514082509393464311005316492230143825614016656610263168372351468261440996700104741718324014972667418168351068517529245152727194264697010896178752501556277243467105111071822125515862824442972401131818567260161528774511737511529189132651645293045947510117401925927016742982467676451195019605275170430354759778012161199512801733308848417914123722029728517633140492480491258320643290179331935007818412794209892951822324550898319130052133530018523298517284541321621681												
220 1379 2456 3851 6296 9842 16146 225 1408 2509 3934 6431 10053 16492 230 1438 2561 4016 6566 10263 16837 235 1468 2614 4099 6700 10474 17183 240 1497 2667 4181 6835 10685 17529 245 1527 2719 4264 6970 10896 17875 250 1556 2772 4346 7105 11107 18221 255 1586 2824 4429 7240 11318 18567 260 1615 2877 4511 7375 11529 18913 265 1645 2930 4594 7510 11740 19259 270 1674 2982 4676 7645 11950 19605 275 1704 3035 4759 7780 1												
225 1408 2509 3934 6431 10053 16492 230 1438 2561 4016 6566 10263 16837 235 1468 2614 4099 6700 10474 17183 240 1497 2667 4181 6835 10685 17529 245 1527 2719 4264 6970 10896 17875 250 1556 2772 4346 7105 11107 18221 255 1586 2824 4429 7240 11318 18567 260 1615 2877 4511 7375 11529 18913 265 1645 2930 4594 7510 11740 19259 270 1674 2982 4676 7645 11950 19605 275 1704 3035 4759 7780 12161 19951 280 1733 3088 4841 7914												
230 1438 2561 4016 6566 10263 16837 235 1468 2614 4099 6700 10474 17183 240 1497 2667 4181 6835 10685 17529 245 1527 2719 4264 6970 10896 17875 250 1556 2772 4346 7105 11107 18221 255 1586 2824 4429 7240 11318 18567 260 1615 2877 4511 7375 11529 18913 265 1645 2930 4594 7510 11740 19259 270 1674 2982 4676 7645 11950 19605 275 1704 3035 4759 7780 12161 19951 280 1733 3088 4841 7914 12372 20297 285 1763 3140 4924 8049												
2351468261440996700104741718324014972667418168351068517529245152727194264697010896178752501556277243467105111071822125515862824442972401131818567260161528774511737511529189132651645293045947510117401925927016742982467676451195019605275170430354759778012161199512801733308848417914123722029728517633140492480491258320643290179331935007818412794209892951822324550898319130052133530018523298517284541321621681												
24014972667418168351068517529245152727194264697010896178752501556277243467105111071822125515862824442972401131818567260161528774511737511529189132651645293045947510117401925927016742982467676451195019605275170430354759778012161199512801733308848417914123722029728517633140492480491258320643290179331935007818412794209892951822324550898319130052133530018523298517284541321621681												
245152727194264697010896178752501556277243467105111071822125515862824442972401131818567260161528774511737511529189132651645293045947510117401925927016742982467676451195019605275170430354759778012161199512801733308848417914123722029728517633140492480491258320643290179331935007818412794209892951822324550898319130052133530018523298517284541321621681												
2501556277243467105111071822125515862824442972401131818567260161528774511737511529189132651645293045947510117401925927016742982467676451195019605275170430354759778012161199512801733308848417914123722029728517633140492480491258320643290179331935007818412794209892951822324550898319130052133530018523298517284541321621681												
25515862824442972401131818567260161528774511737511529189132651645293045947510117401925927016742982467676451195019605275170430354759778012161199512801733308848417914123722029728517633140492480491258320643290179331935007818412794209892951822324550898319130052133530018523298517284541321621681												
260 1615 2877 4511 7375 11529 18913 265 1645 2930 4594 7510 11740 19259 270 1674 2982 4676 7645 11950 19605 275 1704 3035 4759 7780 12161 19951 280 1733 3088 4841 7914 12372 20297 285 1763 3140 4924 8049 12583 20643 290 1793 3193 5007 8184 12794 20989 295 1822 3245 5089 8319 13005 21335 300 1852 3298 5172 8454 13216 21681			2772	4346								
265 1645 2930 4594 7510 11740 19259 270 1674 2982 4676 7645 11950 19605 275 1704 3035 4759 7780 12161 19951 280 1733 3088 4841 7914 12372 20297 285 1763 3140 4924 8049 12583 20643 290 1793 3193 5007 8184 12794 20989 295 1822 3245 5089 8319 13005 21335 300 1852 3298 5172 8454 13216 21681												
270 1674 2982 4676 7645 11950 19605 275 1704 3035 4759 7780 12161 19951 280 1733 3088 4841 7914 12372 20297 285 1763 3140 4924 8049 12583 20643 290 1793 3193 5007 8184 12794 20989 295 1822 3245 5089 8319 13005 21335 300 1852 3298 5172 8454 13216 21681												
275170430354759778012161199512801733308848417914123722029728517633140492480491258320643290179331935007818412794209892951822324550898319130052133530018523298517284541321621681		1645	2930	4594	7510	11740	19259					
2801733308848417914123722029728517633140492480491258320643290179331935007818412794209892951822324550898319130052133530018523298517284541321621681	270	1674	2982	4676	7645	11950	19605					
285 1763 3140 4924 8049 12583 20643 290 1793 3193 5007 8184 12794 20989 295 1822 3245 5089 8319 13005 21335 300 1852 3298 5172 8454 13216 21681	275	1704	3035	4759	7780	12161	19951					
290179331935007818412794209892951822324550898319130052133530018523298517284541321621681	280	1733	3088	4841	7914	12372	20297					
295 1822 3245 5089 8319 13005 21335 300 1852 3298 5172 8454 13216 21681	285	1763	3140	4924	8049	12583	20643					
<u>300</u> 1852 3298 5172 8454 13216 21681	290	1793	3193	5007	8184	12794	20989					
	295	1822	3245	5089	8319	13005	21335					
	300	1852	3298	5172	8454	13216	21681					
					27.0		69					

		KC	GS/HR	2		
Set			Orifice A	Area cm ²		
Pressure	D	E	F	G	Н	J
Barg	.766	1.365	2.141	3.499	5.47	8.974
0.4*	57	102	160	261	409	670
0.6*	64	115	180	294	459	753
0.8*	71	127	199	326	509	836
1*	78	140	219	358	560	918
1.2	86	152	239	390	610	1001
1.4 1.6	93 100	165 177	259 278	423 455	661 711	1084 1167
1.0	100	190	278	433	762	1249
2	107	203	318	519	812	1332
2.2	121	203	339	554	866	1420
2.4	129	230	360	589	921	1511
2.6	137	244	382	625	977	1602
2.8	145	258	404	660	1032	1693
3	152	271	426	696	1088	1784
3.2	160	285	447	731	1143	1875
3.4	168	299	469	767	1199	1966
3.6	176	313	491	802	1254	2057
3.8	183	327	512	838	1309	2148
4	191	341	534	873	1365	2239
4.2	199	354	556	909	1420	2330
4.4	207	368	578	944	1476	2421 2512
4.6	215	382	599	980 1015	1531 1587	2512 2603
4.8 5	222 230	396 410	621 643	1015 1051	1587	2603
5.2	230	410	664	1031	1698	2094
5.4	230	438	686	1122	1753	2876
5.6	253	451	708	1157	1809	2967
5.8	261	465	729	1192	1864	3058
6	269	479	751	1228	1920	3149
6.2	277	493	773	1263	1975	3240
6.4	284	507	795	1299	2031	3331
6.6	292	521	816	1334	2086	3422
7	308	548	860	1405	2197	3604
7.5	327	583	914	1494	2336	3832
8	347	617	968	1583	2474	4059
8.5	366	652	1022	1671	2613	4287
9 9.5	386 405	687	1077	1760	2752	4514
9.5 10	405 424	721 756	1131 1185	1849 1938	2890 3029	4742 4969
10.5	424 444	790	1240	2026	3168	4909 5196
11	463	825	1294	2020	3306	5424
11.5	483	860	1348	2204	3445	5651
12	502	894	1402	2292	3584	5879
12.5	522	929	1457	2381	3722	6106
13	541	964	1511	2470	3861	6334
13.5	560	998	1565	2559	4000	6561
14	580	1033	1619	2647	4138	6789
14.5	599	1067	1674	2736	4277	7016
15	619	1102	1728	2825	4416	7244
15.5	638	1137	1782	2913	4554	7471
16 14 E	658	1171	1836 1891	3002 3091	4693	7699 7926
16.5 17	677 696	1206 1240	1891	3091	4832 4970	7926 8154
17.5	716	1240	1945	3268	5109	8381
17.5	735	1275	2053	3357	5248	8609
18.5	755	1344	2108	3446	5386	8836
19	774	1379	2160	3534	5525	9064
19.5	794	1413	2216	3623	5664	9291
20	813	1448	2271	3712	5802	9519
20.5	832	1483	2325	3800	5941	9746
0.1	3.9	6.9	10.9	17.7	27.7	45.5

* Pressure settings below 15 PSIG (1.034 barg) are non code.

- 15 -

VALVES

AIR CAPACITY CHART

BRONZE MODELS 41A, 42A, 43A, 41AT, 42AT, 43AT, 41AA, 42AA

ASME Section VIII "UV" 90% rated at 10% Overpressure SCFM (M³/HR) Flow Coefficient = .9 x .975 = .878

SCFM

M³/HR

VALVES

Set			Orifice	Area in ²		
Pressure	D	E	F	G	Н	J
PSIG	0.1188	0.2116	0.3318	0.5424	0.8479	1.391
10 *	53	94	148	242	378	620
15	63	111	175	285	446	732
20	72	128	201	329	514	844
25	82	145	228	373	583	956 1040
30 25	91 102	162	255	416	651	1068
35 40	102 112	181 200	284 313	464 512	726 801	1191 1314
40	123	200	343	560	876	1437
50	133	237	372	608	951	1560
55	144	256	402	656	1026	1684
60	154	275	431	704	1101	1807
65	165	294	460	753	1176	1930
70	175	312	490	801	1251	2053
75	186	331	519	849	1326	2176
80	196	350	548	897	1402	2299
85	207	368	578	945	1477	2422
90 05	217	387	607	993	1552	2545
95 100	228	406	637	1041	1627	2669
100 105	238 249	425 443	666 695	1089 1137	1702 1777	2792 2915
105	249 259	443 462	095 725	1137	1852	3038
115	270	402	725	1233	1927	3161
120	280	500	783	1233	2002	3284
125	200	518	813	1329	2002	3407
130	302	537	842	1377	2152	3531
135	312	556	872	1425	2227	3654
140	323	575	901	1473	2302	3777
145	333	593	930	1521	2377	3900
150	344	612	960	1569	2452	4023
155	354	631	989	1617	2527	4146
160	365	649	1018	1665	2602	4269
165	375	668	1048	1713	2677	4392
170	386	687	1077	1761	2753	4516
175	396	706	1106	1809	2828	4639
180 185	407 417	724 743	1136 1165	1857 1905	2903 2978	4762 4885
185	417	743	1105	1905	3053	4000 5008
190	420	781	1224	2001	3128	5131
200	449	799	1253	2001	3203	5254
200	459	818	1283	2097	3278	5378
210	470	837	1312	2145	3353	5501
215	480	855	1341	2193	3428	5624
220	491	874	1371	2241	3503	5747
225	501	893	1400	2289	3578	5870
230	512	912	1430	2337	3653	5993
235	522	930	1459	2385	3728	6116
240	533	949	1488	2433	3803	6239
245	543 EE 4	968	1518	2481	3878	6363
250	554 544	987 1005	1547 1574	2529	3953	6486
255 260	564 575	1005 1024	1576 1606	2577 2625	4028 4104	6609 6732
260	575	1024	1606	2625	4104	6855
205	585 596	1043	1665	2073	4179	6978
275	606	1002	1694	2721	4204	7101
275	617	1000	1723	2817	4404	7224
285	628	1118	1753	2865	4479	7348
290	638	1136	1782	2913	4554	7471
295	649	1155	1811	2961	4629	7594
300	659	1174	1841	3009	4704	7717
1.0	2.2	3.6	6.0	9.6	15.0	24.6

Cot				lraa am?		
Set Pressure	D	E	Unifice F	Area cm ² G	Н	J
Barg	.766	L 1.365	г 2.141	3.499	н 5.47	8.974
0.4*	.700	136	2.141	3499	545	894
0.4	86	153	213	349	612	1004
0.8*	95	170	240	435	679	1114
0.0 1*	95 105	186	200	435	747	1225
1.2	105	203	318	521	814	1335
1.2	123	203	345	564	881	1445
1.4	123	220	345 371	607	948	1556
1.8	142	253	397	650	1016	1666
2	142	270	424	693	1010	1776
2.2	162	288	452	738	1154	1894
2.4	172	307	481	786	1228	2015
2.6	182	325	510	833	1302	2137
2.8	193	343	539	880	1376	2258
3	203	362	568	928	1450	2379
3.2	203	380	596	975	1524	2501
3.4	224	399	625	1022	1598	2622
3.6	234	417	654	1070	1672	2743
3.8	245	436	683	1117	1746	2865
4	255	454	712	1164	1820	2986
4.2	265	473	741	1212	1894	3107
4.4	276	491	770	1259	1968	3229
4.6	286	510	799	1306	2042	3350
4.8	296	528	828	1354	2116	3471
5	307	547	857	1401	2190	3593
5.2	317	565	886	1448	2264	3714
5.4	328	583	915	1496	2338	3835
5.6	338	602	944	1543	2412	3957
5.8	348	620	973	1590	2486	4078
6	359	639	1002	1637	2560	4199
6.2	369	657	1031	1685	2634	4321
6.4	379	676	1060	1732	2708	4442
6.6	390	694	1088	1779	2782	4563
7	410	731	1146	1874	2930	4806
7.5	436	777	1219	1992	3114	5109
8	462	823	1291	2111	3299	5413
8.5	488	870	1363	2229	3484	5716
9	514	916	1436	2347	3669	6019
9.5	540	962	1508	2465	3854	6323
10	566	1008	1581	2584	4039	6626
10.5	592	1054	1653	2702	4224	6929
11	618	1100	1725	2820	4409	7233
11.5	644	1146	1798	2939	4594	7536
12	670	1193	1870	3057	4779	7839
12.5	695	1239	1942	3175	4964	8143
13	721	1285	2015	3293	5148	8446
13.5	747	1331	2087	3412	5333	8749
14 14 E	773	1377	2159	3530	5518	9053
14.5	799	1423	2232	3648	5703	9356
15 15 5	825 051	1469	2304	3767 2005	5888	9659
15.5	851 077	1516	2376	3885	6073	9963
16 16 5	877	1562	2449 2521	4003	6258	10266
16.5 17	903 929	1608 1654	2521 2594	4121 4240	6443 6628	10570 10873
17.5	929 955	1654	2594 2666	4240	6813	10873
17.5	955 980	1700	2000	4358 4476	6998	11176
18.5	980 1006	1740	2738	4476	7182	11480
10.5	1000	1839	2883	4090	7367	12086
19	1052	1885	2003 2955	4713	7552	12080
20	1038	1931	3028	4949	7737	12693
20	1110	1931	3100	5068	7922	12095
0.1	5.2	9.2	14.5	23.6	37	60.7
0.1	0.2	1.2	. 1.0	20.0	0,	00.7

* Pressure settings below 15 PSIG (1.034 barg) are non code.

NOTES:

FIGURE 31 CAST IRON SERIES

APPLICATION DATA

- Steam Boilers
- Pressure Reducing Stations
- Unfired Steam Pressure Vessels & Lines
- Air compressors, Cookers, Receivers
- Pneumatic Systems
- OEM Equipment

VALVE RATINGS See Capacity Charts beginning on page 21

Model	Pressure PSIG (bar)	Temperature °F (°C)
All	10 to 250 (.7 to 17.2)	-20 to 406 (-29 to 208)

FIGURE 31 / 41 CAST IRON SERIES

SIZES 11/2" – 6" PRESSURES to 250 PSIG at 406°F

- Meets ASME Section I & VIII Code for Steam, Air & Non-hazardous Gas Service
- "V" or "UV" National Board Certified
- Dual Ring Control See page 12
- Heavy Duty Construction
- Flanged or Threaded Connections
- SS Trim Design Available
- Heavy Duty Open Lever Assembly

OPTIONS

SS Trim

- BSP Connections
- Test Reports Available

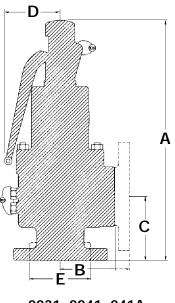
MODELS

- 0031 ASME Section I Steam, Bronze Trim
- 0041 ASME Section VIII Steam, Bronze Trim
- 041A ASME Section VIII Air, Bronze Trim
- 0032 SS Base & Disc on 0031
- 0042 SS Base & Disc on 0041
- 042A SS Base & Disc on 041A

APPLICABLE CODES

- ASME Section I "V" for Steam
- ASME Section VIII "UV" for Steam/Air/Gas
- API 527
- Canadian Registration # 0G0591.9C

CODE SELECTION CHART Orifice Inlet Connec- -Set Pressure Model Size tions 0 1 Α Н C -1 0 0 4 Κ 3 10 2 7 9 4 5 6 8 1 Model -Inlet Size -Orifice -Connections -Position 1, 2, 3 & 4 Position 5 Position 6 Position 7 $G = 1\frac{1}{2}$ $B = FPT \times FPT$ 0031 = ASME Section I Steam, Bronze Trim J H = 2C = 250# x FPT 0041 = ASME Section VIII Steam, Bronze Trim Κ = 21/2 J D = 250# x 125# 041A = ASME Section VIII Air, Bronze Trim L Κ = 3 Z = Other 0032 = SS Base & Disc on 0031 Μ Μ = 4 Set Pressure -0042 = SS Base & Disc on 0041 Ν Ρ = 6 Position 8, 9 & 10 Ρ 042A = SS Base & Disc on 041A = Actual Setting Q LAS - Loosely Assembled[†] R


†Spence Certified Assemblers Only (use 0031or 0032 only)

SPENCE

FIGURE 31 / 41 CAST IRON SERIES

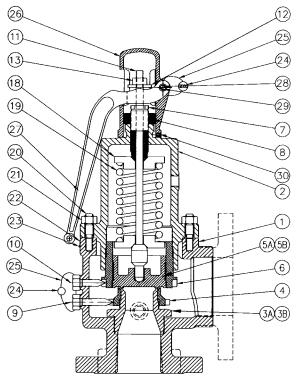
SPECIFICATION

The valve shall meet the ASME Section I or VIII Code for steam, air and gas services. It shall be "V" or "UV" National Board Certified. The valve shall have dual blowdown ring to allow better adjustment of the pop and blowdown. The valve shall be top guided and shall have a semi nozzle for optimum flow performance. The valve shall have an open lever assembly. The valve shall meet the API 527 leakage standard requiring bubble tight shutoff up to 90% of set pressure.

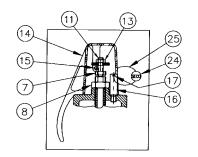
0031, 0041, 041A 0032, 0042, 042A

		-				1			1
Model	Inlet	Orifice	Outlet	A	В	С	D ⁽¹⁾	E	Weight
****JGB	1½" FPT	J	2½" FPT	151%	3½	4¼	3	3¼	29
	(40)		(65)	(384.2)	(88.9)	(108)	(76.2)	(82.6)	(13.2)
****JGC	1½" 250#	J	2½" FPT	151%	3½	4¼	3	_	36
	(40)		(65)	(384.2)	(88.9)	(108)	(76.2)		(16.3)
****JHC	2" 250#	J	3" FPT	15¾	4	45/8	3½	_	42
	(50)		(80)	(400.1)	(101.6)	(117.5)	(88.9)		(19.1)
****KHB	2" FPT	К	3" FPT	15¾	4	4%	3½	3%	36
	(50)		(80)	(400.1)	(101.6)	(117.5)	(88.9)	(92.1)	(16.3)
****KHC	2" 250#	К	3" FPT	15¾	4	4%	3½	_	42
	(50)		(80)	(400.1)	(101.6)	(117.5)	(88.9)		(19.1)
****KJC	2½" 250#	K	3" FPT	15¾	4	4¾	3½	_	45
	(65)		(80)	(400.1)	(101.6)	(120.7)	(88.9)		(20.4)
****LJB	2½" FPT	L	4" FPT	23 (2)	51%	5½	6	4½	97
	(65)		(100)	(584.2)	(130.2)	(139.7)	(152.4)	(114.3)	(44.0)
****LJC	2½" 250#	L	4" FPT	23 (2)	51⁄8	5½	6	_	105
	(65)		(100)	(584.2)	(130.2)	(139.7)	(152.4)		(47.6)
****KKC	3" 250#	К	3" FPT	15¾	4	5	3½	_	48
	(80)		(80)	(400.1)	(101.6)	(127)	(88.9)		(21.8)
****LKC	3" 250#	L	4" FPT	23 (2)	51%	5½	6	_	107
	(80)		(100)	(584.2)	(130.2)	(139.7)	(152.4)		(48.5)
****MKB	3" FPT	М	4" FPT	231/8 (2)	51/8	55/8	6	4½	99
	(80)		(100)	(587.4)	(130.2)	(142.9)	(152.4)	(114.3)	(44.9)
****MKC	3" 250#	М	4" FPT	23 (2)	51%	5½	6		107
_	(80)		(100)	(584.2)	(130.2)	(139.7)	(152.4)		(48.5)
****NMD	4" 250#	N	6" 125#	29½ (2)	7¼	6¾	6		215
	(100)		(150)	(749.3)	(184.2)	(171.5)	(152.4)		(97.5)
****PMD	4" 250#	Р	6" 125#	29½ (2)	7¼	6¾	6	_	215
	(100)		(150)	(749.3)	(184.2)	(171.5)	(152.4)		(97.5)
****QPD (2)	6" 250#	Q	8" 125#	39½ (2)	10	9¼	10½	_	605
	(150)	_	(200)	(1003.3)	(254)	(235)	(266.7)		(274.4)
****RPD (2)	6" 250#	R	8" 125#	39½ (2)	10	9¼	10½	_	605
	(150)		(200)	(1003.3)	(254)	(235)	(266.7)		(274.4)
L		1					``'		

DIMENSIONS* inches (mm) AND WEIGHTS pounds (kg)


*Accurate to ±1/8".

⁽¹⁾ Add 50% to D Dimension when lever is pulled out to manually operate valve.


**** Use appropriate Model Number.

⁽²⁾ Dimensions are current as of printing, consult factory for updated dimensions as they may change.

FIGURE 31 CAST IRON SERIES

CAP & LEVER CONFIGURATION FOR J & K ORIFICES

FIGURE 31 / 41 CAST IRON SERIES

MATERIALS OF CONSTRUCTION

Ref	Part Name	Material
1	Body	Cast Iron ASTM A126-B
2	Bonnet	Cast Iron ASTM A126-B
3A	Nozzle - Bronze	Brass or Bronze ASTM B16 or B62
3B	Nozzle - SST	SST ASME SA351, CF8M or
		ASME SA479, S31600
4	Nozzle Ring	Bronze ASTM B584-C84400
5A	Disc - Bronze	Brass or Bronze ASTM B16 or B62
5B	Disc - SST	SST ASTM A479, S31600
6	Guide Ring	ASTM B584-C84400
7	Adjusting Bolt	Brass ASTM B16
8	Adjusting Bolt Locknut	Steel, Zinc Plated
9	Nozzle Ring Set Screw	Brass ASTM B16
10	Guide Ring Set Screw	Brass ASTM B16
11	Spindle	Steel ASTM A108 Grade 1212
12	Spindle Nut	Steel ASTM A108 Grade 1212
13	Spindle Nut Locknut	Steel, Zinc Plated
14	Lifting Cap	Zinc Alloy Zamac #3
15	Lifting Cap Pins	Steel, Zinc Plated AISI 1020
16	Pivot Post	Steel AISI 1020
17	Post Pin	Steel, Zinc Plated AISI 1070
18	Spring Washer	Steel AISI 1212
19	Spring	Steel Zinc Plated
20	Stud	Steel, Chrome-Moly ASTM A193 B7
21	Stud Nut	Steel, Chrome-Moly ASTM A194 2H
22	Nameplate	SST AISI 304
23	Nameplate Screws	SST Commercial 18-8
24	Lead Seal	Lead
25	Seal Wire	SST AISI 304
26	Lifting Cap	Cast Iron A126-B*
27	Lifting Lever	Cast Iron ASTM A126-B
28	Clevis Pin	Steel, Zinc Plated
29	Cotter Pin	Steel
30	Liftcap Lockscrew	Steel

*Ductile Iron for 4" and above.

ASTM A395 Grade 60-40-18

SATURATED STEAM CAPACITY CHART CAST IRON MODELS 31 & 32

ASME Section I "V" 90% rated at 3% Overpressure LBS/HR (KGS/HR) Flow Coefficient = $.9 \times .975 = .878$

LBS/HR

KGS/HR

LBS/HR						KG3/HR											
Set			0	Drifice Area	, in²				Set			0	rifice Area,	Cm ²			
Pressure	J	K	L	М	Ν	Р	Q	R	Pressure	J	K	L	М	N	P	Q	R
PSIG	1.391	1.892	2.935	3.715	4.468	6.564	11.365	16.475	Barg	8.97	12.21	18.94	23.97	28.83	42.35	73.32	106.29
10 *	1465	2281	3538	4478	5386	7912	13700	19860	0.4*	641	872	1352	1712	2059	3025	5237	7591
15	1991	2708	4200	5318	6394	9394	16265	23579	0.6*	724	984	1527	1932	2324	3414	5912	8570
20	2305	3135	4863	6157	7403	10876	18831	27298	0.8*	806	1097	1701	2153	2589	3804	6587	9548
25	2619	3562	5526	6996	8412	12358	21396	31017	1*	889	1209	1875	2374	2855	4194	7262	10527
30	2983	3989	6188	7835	9420	13839	23962	34736	1.2	971	1321	2050	2594	3120	4584	7937	11505
35	3247	4416	6851	8674	10429	15321	26527	38455	1.4	1054	1434	2224	2815	3385	4974	8611	12483
40	3561	4843	7513	9512	11437	16803	29093	42174	1.6	1137	1546	2398	3036	3651	5363	9286	13462
45	3875	5270	8176	10351	12446	18285	31658	45893	1.8	1219	1658	2573	3256	3916	5753	9961	14440
50	4189	5697	8838	11190	13455	19766	34224	49612	2	1302	1771	2747	3477	4182	6143	10636	15419
55	4503	6125	9501	12029	14463	21248	36789	53331	2.2	1384	1883	2921	3697	4447	6533	11311	16397
60	4817	6552	10163	12868	15472	22730	39355	57050	2.4	1467	1995	3095	3918	4712	6923	11986	17376
65	5131	6979	10826	13707	16480	24212	41920	60769	2.6	1550	2108	3270	4139	4978	7313	12661	18354
70	5451	7414	11502	14562	17509	25723	44537	64562	2.8	1632	2220	3444	4359	5243	7702	13336	19332
75	5774	7854	12184	15426	18548	27249	47180	68393	3	1715	2333	3618	4580	5508	8092	14011	20311
80	6098	8294	12866	16290	19587	28775	49822	72223	3.2	1797	2445	3793	4801	5774	8482	14686	21289
85	6421	8734	13549	17154	20626	30302	52464	76054	3.4	1880	2557	3967	5021	6039	8872	15361	22268
90	6745	9174	14231	18018	21665	31828	55107	79884	3.6	1963	2670	4141	5242	6304	9262	16036	23246
95	7068	9614	14914	18882	22703	33354	57749	83715	3.8	2045	2782	4316	5462	6570	9652	16711	24225
100	7392	10054	15596	19746	23742	34880	60392	87546	4	2128	2894	4490	5683	6835	10041	17386	25203
105	7715	10494	16279	20610	24781	36406	63034	91376	4.2	2120	3007	4664	5904	7100	10431	18061	26181
110	8038	10934	16961	21474	25820	37932	65677	95207	4.4	2293	3119	4838	6124	7366	10431	18736	27160
115	8362	11374	17643	22338	26859	39459	68319	99037	4.4	2275	3231	5013	6345	7631	11211	19411	28139
120	8685	11813	18326	23202	20039	40985	70962	102868	4.0	2370	3347	5192	6572	7904	11613	20106	29146
120	9009	12253	19008	23202	27090	40965	73604	102608	4.0 5	2546	3463	5372	6800	8178	12014	20100	30154
125	9009	12255	19008	24000	20937	44037	76247	110529	5.2	2631	3403	5551	7027	8451	12014	20001	31162
130	9552 9655	12093	20373	24930 25794	29975 31014	44037	78889	114360	5.2 5.4	2031	3694	5731	7254	8724	12410	21497	32170
135	9055 9979	13573	20373	26658	32053	45565	81532	114300	5.6	2801	3810	5911	7481	8998	13219	22192	33177
															1		
145	10302	14013	21738	27522	33092	48616	84174	122021	6	2971	4042	6270	7936	9544	14022	24277	35193
150	10626	14453	22420	28386	34131	50142	86817	125851	6.5	3184	4331	6718	8504	10228	15025	26015	37713
155	10949	14893	23103	29250	35170	51668	89459	129682	7	3397	4620	7167	9072	10911	16029	27753	40232
160	11273	15333	23785	30114	36208	53194	92101	133513	7.5	3610	4910	7616	9640	11594	17033	29491	42751
165	11596	15773	24468	30978	37247	54721	94744	137343	8	3822	5199	8065	10208	12277	18037	31229	45271
170	11919	16212	25150	31842	38286	56247	97386	141174	8.5	4035	5488	8514	10776	12961	19041	32967	47790
175	12243	16652	25832	32706	39325	57773	100029	145004	9	4248	5778	8963	11345	13644	20045	34705	50310
180	12566	17092	26515	33570	40364	59299	102671	148835	9.5	4460	6067	9411	11913	14327	21048	36443	52829
185	12890	17532	27197	34434	41403	60825	105314	152666	10	4673	6356	9860	12481	15010	22052	38181	55349
190	13213	17972	27880	35298	42442	62351	107956	156496	10.5	4886	6646	10309	13049	15694	23056	39919	57868
195	13537	18412	28562	36162	43480	63878	110599	160327	11	5099	6935	10758	13617	16377	24060	41657	60388
200	13860	18852	29244	37026	44519	65404	113241	164157	11.5	5311	7224	11207	14185	17060	25064	43395	62907
205	14183	19292	29927	37890	45558	66930	115884	167988	12	5524	7514	11656	14753	17744	26067	45133	65426
210	14507	19732	30609	38754	46597	68456	118526	171818	12.5	5737	7803	12104	15321	18427	27071	46871	67946
215	14830	20172	31292	39618	47636	69982	121169	175649	13	5949	8092	12553	15889	19110	28075	48609	70465
220	15154	20612	31974	40482	48675	71509	123811	179480	13.5	6162	8382	13002	16458	19793	29079	50347	72985
225	15477	21051	32656	41346	49714	73035	126453	183310	14	6375	8671	13451	17026	20477	30083	52085	75504
230	15800	21491	33339	42210	50752	74561	129096	187141	14.5	6588	8960	13900	17594	21160	31086	53823	78024
235	16124	21931	34021	43074	51791	76087	131738	190971	15	6800	9250	14349	18162	21843	32090	55561	80543
240	16447	22371	34704	43938	52830	77613	134381	194802	15.5	7013	9539	14798	18730	22526	33094	57299	83063
245	16771	22811	35386	44802	53869	79140	137023	198633	16	7226	9828	15246	19298	23210	34098	59037	85582
250	17094	23251	36069	45666	54908	80666	139666	202463	16.5	7438	10118	15695	19866	23893	35102	60775	88102
1.0	64.6	88.0	136.4	172.8	207.8	305.2	528.4	766.0	17	7651	10407	16144	20434	24576	36105	62513	90621
* Pressure se	ettings bel	ow 15 PSI	G (1.034 h		on code.				0.1	42.5	57.9	89.8	113.6	136.6	200.8	347.6	503.9

SATURATED STEAM CAPACITY CHART CAST IRON MODELS 41 & 42

ASME Section VIII "UV" 90% rated at 10% Overpressure LBS/HR (KGS/HR) Flow Coefficient = $.9 \times .975 = .878$

LBS/HR

KGS/HR

,				BS/HI	۲				·				G2/H				
Set			(Drifice Area	, in²				Set			0	rifice Area,	CM ²			
Pressure	J	K	L	М	Ν	Р	Q	R	Pressure	J	K	L	M	N	P	Q	R
PSIG	1.391	1.892	2.935	3.715	4.468	6.564	11.365	16.475	Barg	8.97	12.21	18.94	23.97	28.83	42.35	73.32	106.29
10 *	1742	2251	3676	4653	5596	8221	14235	20635	0.4*	670	912	1414	1790	2153	3163	5477	7939
15	2057	2798	4340	5494	6606	9706	16804	24360	0.6*	753	1024	1589	2011	2419	3554	6153	8919
20	2371	3225	5003	6335	7617	11190	19374	28085	0.8*	836	1137	1763	2232	2685	3944	6829	9899
25	2686	3653	5667	7175	8627	12674	21943	31809	1*	918	1249	1938	2453	2950	4334	7504	10879
30	3000	4081	6330	8015	9637	14158	24513	35534	1.2	1001	1362	2113	2674	3216	4725	8180	11858
35	3346	4551	7060	8939	10748	15790	27339	39631	1.4	1084	1474	2287	2895	3482	5115	8856	12838
40	3692	5022	7790	9863	11859	17422	30165	43729	1.6	1167	1587	2462	3116	3747	5505	9532	13818
45	4038	5492	8520	10787	12970	19055	32992	47826	1.8	1249	1699	2636	3337	4013	5896	10208	14798
50	4384	5963	9250	11711	14081	20687	35818 204 4E	51923	2	1332	1812	2811	3558	4279	6286	10884	15777
55	4730	6433	9980 10710	12636	15193	22320	38645	56020	2.2	1420	1932	2997	3793	4562	6702	11604	16821 17899
60 4 F	5076	6904	10710	13560	16304	23952	41471	60117	2.4	1511	2056	3189	4036	4854	7131	12347	1/899
65 70	5422 5768	7374 7845	11440 12170	14484 15408	17415 18526	25585 27217	44297 47124	64215 68312	2.6 2.8	1602 1693	2179 2303	3381 3573	4279 4522	5146 5439	7561 7990	13091 13834	20055
75	6114	8316	12170	16332	19637	28849	49950	72409	3	1784	2303	3765	4765	5731	8420	14578	21132
80	6460	8786	13630	17256	20748	30482	52777	76506	3.2	1875	2551	3957	5008	6023	8849	15321	22210
85	6805	9257	14359	18180	21860	32114	55603	80604	3.4	1966	2674	4149	5251	6316	9278	16065	23288
90	7151	9727	15089	19105	22971	33747	58429	84701	3.6	2057	2798	4341	5494	6608	9708	16808	24365
95	7497	10198	15819	20029	24082	35379	61256	88798	3.8	2148	2922	4533	5737	6900	10137	17552	25443
100	7843	10668	16549	20953	25193	37012	64082	92895	4	2239	3046	4725	5980	7192	10567	18295	26521
105	8189	11139	17279	21877	26304	38644	66909	96992	4.2	2330	3169	4917	6223	7485	10996	19038	27599
110	8538	11609	18009	22801	27415	40276	69735	101090	4.4	2421	3293	5109	6466	7777	11425	19782	28676
115	8881	12080	18739	23725	28527	41909	72561	105187	4.6	2512	3417	5301	6709	8069	11855	20525	29754
120	9227	12550	19469	24649	29638	43541	75388	109284	4.8	2603	3541	5493	6952	8362	12284	21269	30832
125	9573	13021	20199	25574	30749	45174	78214	113381	5	2694	3665	5685	7195	8654	12713	22012	31910
130	9919	13491	20929	26498	31860	46806	81041	117479	5.2	2785	3788	5877	7438	8946	13143	22756	32987
135	10265	13962	21659	27422	32971	46438	83867	121576	5.4	2876	3912	6069	7681	9238	13572	23499	34065
140	10611	14432	22388	28346	34082	50071	86693	125673	5.6	2967	4036	6261	7924	9531	14002	24243	35143
145	10957	14903	23118	29270	35194	51703	89520	129770	6	3149	4283	6645	8410	10115	14860	25730	37298
150	11303	15373	23848	30194	36305	53336	92346	133868	6.5	3377	4593	7125	9018	10846	15934	27588	39993
155	11648	15844	24578	31118	37416	54968	95173	137965	7	3604	4902	7605	9626	11577	17007	29447	42687
160	11994	16314	25308	32043	38527	56601	97999	142062	7.5	3832	5212	8085	10233	12307	18081	31305	45381
165	12340	16785	26038	32967	39638	58233	100825	146159	8	4059	5521	8565	10841	13038	19154	33164	48075
170	12686	17256	26768	33891	40749	59865	103652	150256	8.5	4287	5830	9045	11448	13769	20228	35023	50770
175	13032	17726	27498	34815	41861	61498	106478	154354	9	4514	6140	9525	12056	14499	21301	36881	53464
180	13378	18197	28228	35739	42972	63130	109305	158451	9.5	4742	6449	10005	12663	15230	22375	38740	56158
185 190	13724 14070	18667 19138	28958 29688	36663 37587	44083 45194	64763 66395	112131 114957	162548 166645	10 10.5	4969 5196	6759 7068	10485 10965	13271 13878	15961 16691	23448 24522	40599 42457	58853 61547
190 195		19138 19608	29688 30418	37587 38512	45194 46305	68028	117784	170743	10.5	5196 5424	7378		13878	17422	24522	42457	64241
200	14416 14762	20079	30418 31147	38512 39436	46305 47416	68028 69660	120610	170743	11.5	5424 5651	7687	11445 11925	14486	1/422	25595	44316	66936
200	14762	20079	31147 31877	40360	4/410	71292	120610	174840	11.5	5879	7996	12404	15094	18153	20009	40174 48033	69630
203	15108	20349	32607	40300	49639	72925	126263	183034	12	6106	8306	12404	16309	19614	28816	49892	72324
210	15454	21020	33337	41204	50750	74557	120203	187131	12.5	6334	8615	13364	16916	20345	29889	51750	75019
213	16146	21961	34067	43132	51861	76190	131916	191229	13.5	6561	8925	13844	17524	21076	30963	53609	77713
225	16492	22431	34797	44057	52972	77822	134742	195326	14	6789	9234	14324	18131	21806	32036	55468	80407
230	16837	22902	35527	44981	54083	79455	137569	199423	14.5	7016	9543	14804	18739	22537	33110	57326	83102
235	17183	23372	36257	45905	55194	81087	140395	205320	15	7244	9853	15284	19346	23268	34183	59185	85796
240	17529	23843	36987	46829	56306	82719	143221	207618	15.5	7471	10162	15764	19954	23998	35256	61044	88490
245	17875	24313	37717	47753	57417	84352	146048	211715	16	7699	10472	16244	20562	24729	36330	62902	91185
250	18221	24784	38447	48677	58528	85984	148874	215812	16.5	7926	10781	16724	21169	25460	37403	64761	93879
1.0	69.2	94.0	146.0	184.8	222.2	326.4	565.2	819.4	17	8154	11091	17204	21777	26191	38477	66619	96573
* Pressure se	ettings belo	ow 15 PSI	G (1.034 k	arg) are no	on code.				0.1	45.5	61.9	96	121.5	146.1	214.7	371.7	538.9

AIR CAPACITY CHART CAST IRON MODELS 41A & 42A

ASME Section VIII "UV" 90% rated at 10% Overpressure SCFM (M³/HR) Flow Coefficient = .9 x .975 = .878

SCFM

M³/HR

Pressure J K L M N P O R 196 1.91 1.82 2.95 7.91 4.46 4.91 3.5 7.92 7.	Set			0	Drifice Area,	, in ²			1	۱ ۱	Set			0.	Drifice Area,	. CM ²			
10 670 640 140 156 1790 1760<	Pressure			L	М	N					Pressure	-		L	М	N			
15 732 996 1967 0.4' 104 136. 219 232. 237. 820.5 1330 25 956 1300 2032 255. 211 333. 806 900 1302 25 956 1300 2032 255. 300 907 755 1302 171 125. 166. 254. 210.7 333. 500 1007 430. 30 1101 1102 1101 1102 1101 1102 1101 1102 1101 1102 1101 </td <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>					1					1									
20 844 148 1285 2554 301 118 118 111 710 1125 116 2125 116 2125 116 2125 116 2125 116 2125 116 2125 116 211 1136 116 211 1136 116 211 1136 116 211 1136 116 211 1136 116 211 1136 116 <											1 1								
15 966 1300 2017 255 3001 6451 1322 17 1213 186 250 300 1001 1406 510 1301 1301 1301 1301 1301 1301 1312 2333 181 2301																			
100 1008 1433 223 283 3420 500 8725 1246 12 133 116 211 356 428 6200 10981 8131 40 1344 1767 2713 3511 4201 6201 1032 1565 164 2264 3515 4490 532 1451 1211 14026 55 1664 2202 357 4448 5408 746 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1278 1474 1271 1476 1278 1474 1271 1278 1278 1278 1278 1278 1278 1278 1474 1475 1278 1474 1271 1476 12805 1278 1278 1278 1278 1278 1278 1278 1482 1478 1488 1474 1478 1488 1478 1478 1488 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																			
15 1191 1620 2513 3121 3226 5620 9731 14106 164 1645 1640 3800 4683 6621 11810 71719 45 1447 1985 033 3804 4497 7431 1742 1745 1745 1745 1745 1745 1746 1745 1746 1745 1746 1745 1744 1745 1745 1746 1745 1746 1746 1747 1745 1746 1746 1747 1746 1747 1746 1745 1746 1747 1746 1747 1746 1747 1746 1747 1746 1747 1746 1747 1746 1747 1746 1747 1746 1747 1746 1747 1746 1747 1746 1747 1746 1747 1746 1747 1746 1747 1746 1747 1746 1747 1746 1747 1747 1747 1747 1747<										1.1									
40 1314 1727 2733 3511 4221 6201 17037 1566 1.6 1560 2116 338 455 4997 7341 1211 144/26 50 1500 2122 3322 4108 5012 7333 1219 1807 22 177 216 318 4454 550 8821 14512 13039 50 1807 2257 3312 426 503 156 1476 2189 2.4 201 2741 4252 552 4638 9731 1414 2305 170 2013 2794 4324 6499 177 2415 2.8 238 2011 4144 653 1764 1448 2305 170 2017 1377 681 1797 10212 1779 2113 2401 2373 531 588 764 11271 14493 14014 1433 14014 1433 14014 1433										1.1									
4437 1955 3033 3040 4017 6783 11741 1703 188 1660 2266 2216 3352 1443 1704 1703 55 1684 2209 3552 4496 508 7853 12749 1245 22 1716 216 3716 4471 5703 6633										1.1									
55 1560 2220 352 4496 502 736 1276 1476 2416 376 976 382 1571 2431 2176 2416 376 976 608 603 9807 1574 2231 60 1930 2657 3812 4826 503 852 1476 2487 24 2015 2714 4252 5382 6473 9510 16465 2386 70 2037 772 4327 5484 6744 785 2737 33 2379 336 500 680 1002 2747 4320 2461 1371 783 323 500 681 1292 2964 201 2161 2472 356 802 1000 2421 2365 811 1292 2164 3306 442 3104 426 406 604 795 901 1463 2337 3622 100 2772 5897 5891<										1.1									
55 1644 2290 3552 4496 508 930 1275 1375 1490 222 1994 276 3932 6433 9101 1576 2287 70 2033 2747 4322 544 654 990 1757 2176 228 201 141 425 532 6433 1002 1745 2336 80 2299 3127 4851 6407 7387 737 737 737 737 6476 6303 1002 1745 2305 80 2299 3127 4851 6407 7388 7386 7381 2305 1143 1979 2406 360 2402 1233 2412 333 1788 3362 3362 3372 344 262 3896 6404 661 2307 1314 2310 3362 3373 3602 3373 3602 3373 3602 3373 3602 3373 3602																			
60 1007 2453 312 40.6 50.3 65.6 14.64 23.98 65 1930 2452 515.5 619 90.01 15.67 22.6 21.7 290.6 45.00 75.06 66.01 10.20 14.46 23.93 75 2176 240.4 4592 511.6 6142 37.5 18.0 23.97 23.2 23.01 41.04 60.60 75.2 11.00 24.02 24.02 85 2422 32.07 511.1 61.41 77.97 51.73 3.2 25.01 31.01 15.00 24.02 24.02 33.02 25.01 30.01 32.0 25.01 30.01 32.0 25.01 30.01 32.00 30.01 32.0 25.01 30.01 32.00 30.01 32.00 30.01 32.00 30.01 32.00 30.01 32.00 30.01 32.00 30.01 32.00 30.01 32.00 30.01 32.00 32.00 32.																			
165 1930 2226 4072 5185 6199 9107 1576 1276 2176 2486 6594 6683 1092 11456 2503 75 176 2960 4322 5884 6990 10290 1179 25173 3 379 226 6020 6354 7642 1122 1939 2217 1848 26123 3016 4208 507 6678 8032 11800 2043 2617 90 2545 3462 5371 6000 1179 1271 290 306 648 11313 12945 2243 3054 5386 6404 158 2866 558 299 991 14060 2303 30302 3052 100 2792 3797 5891 7458 9676 1314 22910 3065 4 2966 6561 6299 991 14060 2538 30629 100 2792 3967 13																			
10 203 279 4332 548 657 9471 28 228 237 4764 6030 7523 10655 11448 26742 75 2176 2990 3127 485 6142 7385 10850 1779 2573 3.2 2201 3401 527.6 658 8032 11800 2462 3026 532 7002 8422 12372 2142 3054 90 2545 3460 531 1000 1010 1010 30.6 274.3 3731 5788 7026 811 2445 2433 2412 3054 100 2792 3797 5891 7036 13752 2386 4445 320 8401 1406 2538 3002 110 3038 4132 6416 6150 7787 9363 13752 2386 444 3229 431 422 1506 1200 3364 1402 5433 3802<							9107			t i									
15 2176 2960 4582 6142 7179 2573 3 2399 3335 5020 6534 7642 1122 10430 2919 80 2299 3127 4851 6142 7385 1080 1071 2207 3.4 2672 3666 5537 700 8422 1222 2131 2401 3424 2673 5733 578 736 8032 1202 2172 2172 2172 2172 2172 2173 3411 4262 3466 4561 9201 3581 4362 5393 6001 7575 9591 14090 2495 3366 144 2966 4616 6200 7975 9591 14090 24395 3316 4623 13737 3578 3307 8523 1303 1632 35373 35239 105 3407 4635 1749 944 1716 17161 16381 28361 1114 16381 28361 <td>70</td> <td>2053</td> <td>2792</td> <td>4332</td> <td>5484</td> <td>6594</td> <td>9688</td> <td>16773</td> <td>24315</td> <td>1.1</td> <td>2.8</td> <td>2258</td> <td>3071</td> <td>4764</td> <td>6030</td> <td>7252</td> <td>10655</td> <td>18448</td> <td>26742</td>	70	2053	2792	4332	5484	6594	9688	16773	24315	1.1	2.8	2258	3071	4764	6030	7252	10655	18448	26742
B0 2299 3127 485 642 738 10850 13785 27232 32 2501 3361 5776 678 802 11000 20.302 3105 90 2544 3402 5311 6600 1171 12012 2077 3014 3.66 5532 7002 8422 1304 3.89 90 2546 3303 6511 1712 8572 1203 13061 3.66 5532 7002 8424 3.297 1307 5318 2.305 33928 13079 3.38 2.865 3.896 6.044 7615 1409 3.3802 110 3038 4132 6410 1314 2.828 3.8994 4.6 3.30 6.655 7068 8047 10.76 5.337 3.8021 120 3284 4067 6903 1744 10.848 16161 4.597 5.33 8.897 7.808 9.995 11.86 3.8034 4.9983	75	2176	2960	4592	5813	6990	10269	17779	25773	1.1	3	2379	3236	5020	6354	7642	11227	19439	28179
B5 24/2 3295 5111 64/1 7781 11431 1979 28690 3.4 26/2 3566 5532 7002 84/2 12372 21422 3104 90 2565 3660 5531 7129 8572 12922 20797 30149 3.8 2743 3785 8604 765 920 1518 2305 3328 100 2792 3797 5891 7488 8967 13174 22816 3326 4.2 2307 4226 556 8999 8140 25383 36902 110 3038 4132 6410 8116 9758 1433 24822 35982 4.4 3209 4391 4525 1038 1070 1523 25373 36902 110 3038 4467 6403 8774 1443 3374 44 4274 540 3355 1540 1070 1508 23733 42551 1300	80	2299	3127	4851	6142		10850	18785	27232	1.1	3.2	2501	3401	5276	6678	8032	11800	20430	29617
90 25.6 3.42 5.37 6.000 81.6 12.012 20.797 80.40 3.38 28.65 33.31 57.88 72.26 81.1 12.945 23.43 33.928 100 2792 37.97 58.90 71.37 28.90 13.05 23.05 4 29.66 4.06 6.00 77.5 95.91 14.03 23.83 38.0 28.65 98.90 6.04 7.65 82.99 98.1 1.05.8 23.83 38.0 4.02 30.01 6.00 77.5 95.91 1.06.0 23.83 38.0 4.4 32.01 4.05 1.05.9 1.05.9 38.0 4.5 32.01 4.55 7.00 10.01 1.05.9 1.03.9 38.0 4.5 32.01 4.55 7.00 1.05.9 1.03.9 38.0 4.50 1.05.9		2422				7781	11431									8422	12372	21422	
100 2792 3797 5891 7458 8967 13174 22810 33665 42 2980 4061 6500 975 9981 1400 23963 3355 23816 34524 110 308 4132 6410 8164 9758 13355 23862 442 3302 4556 7686 8299 9981 1063 2552 23737 3862 120 3284 4467 6930 8774 1049 15498 26834 3889 48 3471 4722 7324 9271 11150 1681 8293 4857 130 3564 4907 7499 9421 1340 1660 2884 4161 522 3714 5052 7836 9997 1208 3334 43988 1355 3664 4907 7099 1041 1222 1848 1472 548 3956 1219 1848 1310 43329 1356																	12945	22413	
105 2915 3965 6150 7787 9363 1375 23816 34524 4.2 3107 4.26 6556 8299 9981 14633 2537 36802 110 3038 4132 6410 8116 9786 14362 26824 3982 44 6320 6556 7068 8023 1552 26370 38289 120 3284 4467 6930 8774 1549 1549 26344 3889 48 3711 4722 7324 9271 1150 16381 28364 41114 125 3407 4749 9431 1140 1050 27374 552 3714 550 7350 7969 1752 3344 4398 135 3654 4970 7709 9761 11736 1721 2925 4341 54 3835 517 8090 10471 1303 14031 3164 4512 31031 1313 1417																			
110 30.8 41.32 6410 8116 97.80 143.6 24.822 39.82 4.4 32.29 4.391 681.2 8.2.2 103.0 15.3.5 26.379 33.839 115 3161 4.460 3200 4566 4566 4566 4566 4947 107.06 15.80 273.0 3967 120 3244 4467 4635 7190 9103 10545 1699 27340 4335 55 393 4887 7580 9919 1129 175.0 303.4 43988 130 3564 4970 7709 9761 1173.6 172.1 292.2 3984 1472 75.4 335.2 8381 10661 13083 345.4 140 3777 5137 7469 10090 1213 172.2 1844 4191 6.4 390.6 612.4 9501 121.5 133.8 457.8 532.9 145 4446 532.9 547											1 1								
115 3161 4300 6670 8445 10154 14917 25828 3740 4.6 3350 4556 7068 8947 10760 15808 27370 39676 120 3284 4467 6930 8774 10549 16600 27840 40357 5 3593 4827 7324 9271 11150 16331 23933 42551 130 3581 4802 7449 9432 11340 16660 28846 41816 5 3593 4887 7800 9091 1129 17526 3034 4525 140 3770 5137 7069 10701 12131 17622 3584 4472 5328 3848 10561 12070 16313 3027 66622 155 4146 5640 8747 9708 13131 1365 3874 4707 4656 4537 14121 1388 16861 3336 4525 1414 12836 15437 2477 3788 3327 4562 155 4146 5										1.1									
120 3284 4467 6930 8774 10549 15498 26834 3889 4.8 3471 4722 7324 9271 11150 16381 28361 41114 125 3407 4635 7790 9703 10945 16079 27840 40357 5 3593 4880 9995 11540 16953 29334 42551 130 3581 4002 7749 9761 11736 17241 29852 43274 5.4 3835 5217 8092 1023 1219 18080 3130 45425 140 3777 5137 7969 10090 1211 17822 30858 4472 5.6 3957 5382 8348 1057 1219 18071 32327 46862 145 3900 5347 8489 1747 14922 1848 47649 6.5 4503 6124 9501 1205 1448 1210 4716 6378 5332 1414 1340 4702 4788 53379 5262 4533 1										1.1									
125 3407 4635 7190 9103 10945 16079 27840 40357 55 3593 4887 7580 9595 11540 1693 2933 42511 130 3581 4802 7449 9432 11340 16660 28866 41816 52 3714 5052 7836 9791 11929 17526 30344 43988 140 3777 5137 7069 10090 12131 1782 30858 44732 566 3957 5322 8348 10567 1279 1861 3323 46862 145 3000 5305 8229 10418 12527 18403 31864 46191 6 4199 5712 8060 11215 1348 1976 32329 1667 32329 14463 12471 3678 33299 1541 1445 1543 22679 39267 5692 1074 1836 46102 4110 1445 1543 22679 39267 5692 14141 14456 1543 22679 39267										t i									
130 381 4802 7449 9432 11340 1660 28846 41816 5.2 3714 5052 7836 9919 11929 17526 3034 43988 135 3654 4707 7709 7061 11736 17241 29852 43274 5.6 3385 5217 8092 10243 1219 18071 3133 4542 145 3900 5305 8229 10418 1257 18403 31864 46191 6 4199 5712 8860 1105 1348 9267 5692 5692 1446 5640 8742 848 10761 1313 1965 3336 4749 65 4503 6114 1205 1443 1214 1416 6051 1071 1346 16142 9268 1734 14109 20147 3482 5056 715 1709 10761 1346 6414 6414 1489 2149 4474 6714 1414 1450 1704 1606 1371 4679 1471 14049 12241 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>t i</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										t i									
135 3654 4970 7709 9761 11736 1724 29852 43274 5.4 3835 5217 8092 1023 1213 1326 4542 145 3900 5305 829 10418 1227 1803 3186 4610 6 4199 571 8806 11215 1348 93136 45425 145 3900 5305 829 10418 1227 18403 3186 46101 6.5 3957 532 8348 1056 1215 1446 5425 4321 47368 5329 155 4146 5640 8748 1076 13318 1955 3376 49107 7 4806 6537 1011 1286 1432 24114 4174 655 165 4329 5974 9268 1174 1419 2139 3684 5024 7 1071 1266 1350 4622 4211 4175 61775																			
140 3777 5137 7969 10090 12131 17822 30858 44732 5.6 3957 5382 8348 10567 1270 18671 32327 46862 145 3000 5305 8229 10418 12527 18084 38164 46191 6 4199 5712 8806 11215 13488 19164 3430 49136 150 4023 5472 8849 10747 1292 18984 32874 47649 6.5 4503 6124 9501 1202 14433 1247 3768 5322 160 4269 5807 908 1145 13713 20147 3482 50566 7.5 5109 6950 10781 13646 16412 2410 41745 60515 165 4439 6507 9788 1232 14900 21399 3790 54841 9.5 5716 7775 12061 1336 2032 4910 7123 180 4639 6044 1037 1057 1339 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>											1 1								
145 3900 5305 8229 10418 1257 18403 3186 46191 150 4023 5472 8489 10747 12922 18984 32070 47649 6.5 4503 6124 9501 1205 14463 21247 3788 5329 155 4146 5640 8748 11076 13318 19565 33876 49107 7 4806 6537 10141 1286 15437 22679 39267 56922 165 4392 5974 9268 11734 14109 20728 35888 52024 8 5413 7362 11421 1446 1736 2542 4422 64108 75 175 4639 6309 9788 12392 14900 21890 37900 54341 9 619 817 1211 1446 1330 2407 3786 7129 175 4639 6644 10307 13379 16086 23633 40918 5936 10 6626 9013 13911 1686																			
150 4023 5472 8489 10747 1292 18984 32870 47649 6.5 4503 6124 9501 12025 14463 21247 36788 53329 155 4146 5640 8748 11076 13318 19565 33876 49107 7 4806 6537 10141 12836 15437 22679 39267 56922 165 4392 5974 9268 1174 14109 20728 35888 50264 8 5116 775 1606 1606 6309 9788 1232 1400 21890 36904 5433 85 5716 7775 16076 1935 28405 49180 71293 180 4762 6477 10047 1221 1525 22471 38906 56399 9.5 6323 8600 1331 16866 2039 28405 49180 71293 180 4762 6477 10047 1227 1525 29241 41924 6074 11 7233 8818 1621											1 1								
155 4146 5640 87.8 11076 13318 19565 33876 49107 7 4806 6537 10141 12836 15437 22679 39267 56922 160 4269 5807 9008 11405 13713 20147 34882 50566 7.5 5109 6900 10781 13466 16412 24110 41745 60515 170 4516 6142 9528 12063 14504 21309 36894 53481 8.5 5716 77.5 12061 15266 1830 26973 46702 67700 180 4762 6477 10047 1221 15295 22471 38906 56399 9.5 6323 8600 13311 1686 2039 28435 4137 7479 190 5008 6412 10307 13379 16086 24334 40918 5936 10.5 6929 9425 14621 1850 2228 3269 56616 82072 195 5318 6774 1741 1087<										1.1									
160 4269 5807 9008 11405 13713 20147 34882 50564 7.5 5109 6950 10781 13646 16412 24110 41745 60515 165 4392 5974 9268 11734 14109 20728 35888 52024 8 5131 7362 11421 14456 1736 25542 44224 64108 170 4516 6142 9528 12032 14000 21899 37900 54941 9 6019 8187 1201 16076 19335 28405 49180 71293 180 4885 6644 10307 13050 15691 23052 39912 57858 100 6626 9013 1381 1769 2228 3269 5616 82072 195 5131 6979 10827 1370 16862 2424 41924 60774 11 7233 9838 15261 1317 2322 3131 5904 8565 200 5254 7147 11087 14037										1.1									
165 4392 5974 9268 11734 14109 20728 35888 52024 8 5413 7362 11421 14456 1736 2524 44224 64108 170 4516 6142 9528 12063 14504 21309 36894 53483 8.5 5716 7775 12061 15266 18360 2673 46702 67700 180 4762 6477 10047 12721 15295 22471 38906 56399 9.5 6323 8600 13311 1686 20309 29836 51459 78489 185 4885 6644 10307 13379 16086 2633 40918 59316 105 6226 9013 13981 1766 1283 56416 82072 195 5131 6979 10827 13708 16482 24214 41924 6074 11 7233 9838 15261 19317 2323 34131 5094 82052 200 5254 7147 11087 14037 16864										1.1									
17045166142952812063145042130936894534838.557167775120611526618360269734670267700175463963099788123921490021890379005494196019818712701160761933528405491807129318047626477100471272115252247138906563999.563238600133411686203092983651559748861905008661210567133791608623633409185931610.662690131398117696212833126854137784791905008661210567133791608623633409185931610.692994251462118507222832699566168207219551316979108271370816482241441924607341173339838152611931723233131590985622055378714711087140371687724795247956230622311.5753610250159012012724206356266153925721055017482116614695176682597449426515012.5814311076171812174726155384256650396443220 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>11</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										11									
1754639630997881239214900218903790054941960198187127011607619335284054918071293180476264771004712721152952247138906563999.563238600133411688620392983651659748861854885664410307130501569123052399125785810662690131398117666212833126854137784791905008681210567133791686223633409185931610.5662994251462118507222832695616820721905254714711087140371687724795429306223311.5753610561150120127240635562615738295720553787314113461436617273253764393666081113.581431107617182174726155384256653096443215562476491186615024180642653845948666081384461148817821225727130398566900810036225587079841236156421855277004796469251490531231191011846123368281044128817466103629																			
180 4762 6477 10047 1271 1529 22471 38906 56399 9.5 6323 8600 13341 1688 2039 29836 51659 74886 185 4885 6644 10307 13050 15691 23052 39912 57858 10 6626 9013 13981 17696 21283 31268 54137 78479 190 5038 6812 10567 13379 16086 26333 40918 59316 10.5 6929 9425 14621 18507 22258 3269 5616 82072 200 5254 7147 11087 14037 16877 24795 42930 6233 11.5 7536 10250 1591 20127 24206 35526 6153 89257 205 5378 7344 1136 14366 17273 2537 43936 63691 12 7839 10663 16541 20937 2518 36494 64051 92850 210 5564 7649 11866																			
185 4885 6644 10307 13050 15691 23052 39912 57858 10 6626 9013 13981 17696 21283 31268 54137 78479 190 5008 6812 10567 13379 16086 23633 40918 59316 10.5 6929 9425 14621 18507 2258 3269 5616 82072 195 5131 6979 10827 13708 16482 24214 41924 60774 11 7233 9838 15261 19317 2322 3131 5909 85665 200 5254 7147 11087 14037 1667 24795 42930 62233 11.5 7536 10250 15901 20127 24206 35562 61573 89257 2010 5501 7482 1166 14695 17668 25957 44942 65150 112.5 8143 11076 1718 21747 26155 38425 66630 9008 100036 2025 5870 7849											1								
1905008681210567133791608623633409185931610.569299425146211850722258326995661682072195513169791082713708164822421441924607741172339838152611931723232341315904856652005254714711087140371687724795429306223311.57536102501590120127242063556261573892572055378731411346143661727325376439366369112783910663165412093725181369464051928502105501748211606146951766825957449426515012.58143110761718121747261553842566530964432205747781712126153531845927119469546806613.587491190118461233682810441288714661036292255870798412386156821855277004796069525149053123131910124178290784271973651072212305993815216461160101925128281489667098314.5935612726197412498830053441517643108142																			
195513169791082713708164822421441924607741172339838152611931723232341359094856652005254714711087140371687724795429306223311.57536102501590120127242063556261573892572055378731411346143661727325376439366369112783910663165412093725181369464051928502105501748211606146951766825957449426515012.5814311076171812174726155384256653096443215562476491186615024180642653845948660813.58749119011846123368281044128871466103629225587079841238615682188552770047960695251490531231319101241782907842719739651072212305993815212646160101925128281489667098314.59356127261974124988300534415176443110814235611683191290516339196462886249972724411596591313920381257831027455827892211407										1.1									
200 5254 7147 11087 14037 16877 24795 42930 62233 11.5 7536 10250 15901 2017 24206 35562 61573 89257 205 5378 7314 11346 14366 17273 25376 43936 63691 12 7839 10663 16541 20937 25181 3694 64051 92850 210 5501 7482 11606 14695 17668 25957 44942 65150 12.5 8143 1106 17181 21747 26155 38425 66530 96443 220 5747 7817 12126 15353 18459 27119 46954 68066 13.5 8749 11901 18461 23368 28104 41288 7146 103629 225 5870 7984 12386 15682 1855 27700 47960 69525 14 9053 12313 19101 24178 29078 42119 73965 107221 230 5993 8152 16461 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>										1.1									
205 5378 7314 11346 14366 17273 25376 43936 63691 12 7839 10663 16541 20937 25181 3694 64051 92850 210 5501 7482 11606 14695 17668 25957 44942 65150 12.5 8143 11076 17181 21747 26155 38425 66530 96443 215 5624 7649 11866 15024 18064 26538 45948 66608 13 8446 11488 17821 22557 27130 39856 69008 10036 220 5747 7817 12126 15353 18459 27119 46954 68066 13.5 8749 11901 18461 23368 28104 41288 71486 103629 225 5870 7984 12386 16501 19251 28281 48966 70983 14.5 9356 12726 19741 24988 30053 44151 76443 10814 235 6116 8319 12905										1.1									
210 5501 7482 11606 14695 17668 2597 44942 65150 12.5 8143 11076 17181 21747 26155 38425 66530 96443 215 5624 7649 11866 15024 18064 26538 45948 66608 13 8446 11488 17821 22557 27130 39856 69008 10036 220 5747 7817 12126 15353 18459 27119 46954 68066 13.5 8749 11901 18461 23368 28104 41288 71486 103629 225 5870 7984 12386 16601 19251 28281 48966 70983 14.5 9356 12726 19741 24988 30053 44151 76443 10814 235 6116 8319 12905 16339 19646 28862 49972 72441 15 9659 13139 20381 2578 31027 45582 78922 11407 245 6363 8654 13425<										1.1									
215 5624 7649 11866 15024 18064 26538 45948 6608 13 8466 1488 17821 2257 27130 39856 69008 10036 220 5747 7817 12126 15353 18459 27119 46954 68066 13.5 8749 11901 18461 23368 28104 41288 71486 103629 225 5870 7984 12386 15682 18855 27700 47960 69525 14 9053 12313 19101 24178 29078 42719 73965 10721 230 5993 8152 12646 16010 19251 28281 48966 70983 14.5 9356 12726 19741 24988 30053 44151 7643 10814 235 6116 8319 12905 16339 19646 28862 49972 72441 15 9659 13139 20381 2578 31027 45582 78922 11407 245 6363 8654 13425																			
220 5747 7817 12126 1535 18459 27119 46954 68066 13.5 8749 11901 18461 23368 28104 41288 71486 103629 225 5870 7984 12386 15682 18855 27700 47960 69525 14 9053 12313 19101 24178 29078 42719 73965 10721 230 5993 8152 12646 16010 19251 28281 48966 70983 14.5 9356 12726 19741 24988 30053 44151 76443 10814 235 6116 8319 12905 16339 19646 28862 49972 72441 15 9659 13139 20381 25798 31027 45582 78922 11407 240 6239 8487 13155 1668 20042 29433 50979 73900 15.5 9963 13551 21022 26608 32001 47014 81400 118000 245 6363 8654 13425																			
225 5870 7984 12386 1562 18855 27700 47960 69525 14 9053 12313 1910 24178 29078 42719 73965 10721 230 5993 8152 12646 16010 19251 28281 48966 70983 14.5 9356 12726 19741 24988 30053 44151 76443 110814 235 6116 8319 12905 16339 19646 28862 49972 72441 15 9659 13139 20381 25798 31027 45582 78922 114407 245 6363 8654 13425 16977 20437 30024 51985 75358 16 10266 13964 21662 27418 32976 4845 83879 12593 250 6486 8822 13685 17326 20833 30605 5291 76817 16.5 10570 14376 2302 28228 33950<																			
230 5993 8152 12646 16010 19251 28281 48966 70983 14.5 9356 12726 19741 24988 30053 44151 76443 110814 235 6116 8319 12905 16339 19646 28862 49972 72441 15 9659 13139 20381 25788 31027 45582 78922 114007 240 6239 8487 13165 16668 20042 29443 50979 73900 15.5 9963 13551 21022 26608 32001 47014 81400 118000 245 6363 8654 13425 16997 20437 30024 51985 75358 16 10266 13964 21622 27418 32976 48445 83879 121593 250 6486 8822 13685 17326 20833 30605 52991 76817 16.5 10570 14376 22322 28228 <										t i									
235 6116 8319 12905 16339 19646 28862 49972 72411 15 9659 13139 20381 2578 31027 45582 78922 11407 240 6239 8487 13165 16668 20042 29443 50979 73900 15.5 9963 13551 21022 26608 3201 47014 81400 118000 245 6363 8654 13425 16997 20437 30024 51985 75358 16 10266 13964 21662 27418 32976 48458 83879 121593 250 6486 8822 13685 17326 20833 30605 52991 76817 16.5 10570 14376 22302 28228 33950 49877 86357 125186 1.0 24.6 33.6 52.0 65.8 79.2 116.2 201.8 17 17.8 14789 29042 29039 34925 15.08										1.1									
240 6239 8487 13165 16668 20042 2943 50979 73900 15.5 9963 13551 21022 26608 3201 47014 81400 118000 245 6363 8654 13425 16997 20437 30024 51985 75358 16 10266 13964 21662 27418 32976 48445 83879 121593 250 6486 8822 13685 17326 20833 30605 52991 76817 166.5 10570 14376 22302 28228 33950 49877 86357 125186 1.0 24.6 33.6 52.0 65.8 79.2 116.2 201.2 291.8 147.9 247.9 29039 34925 51308 8835 125186 1.0 24.6 33.6 52.0 65.8 79.2 116.2 201.8 147.9 147.9 29039 34925 51308 88361 125186										11									
245 6363 8654 13425 1697 20437 30024 51985 75358 16 10266 13964 2162 27418 32976 48445 83879 121593 250 6486 8822 13685 17326 20833 30605 52991 76817 165 10570 14376 22302 28228 33950 49877 86357 125186 1.0 24.6 33.6 52.0 65.8 79.2 116.2 291.8 11.0 107.0 14376 22302 28228 33950 49877 86357 125186 1.0 24.6 33.6 52.0 65.8 79.2 116.2 291.8 11.0 1478 22942 29039 34925 51308 88350 128778										11									
250 6486 8822 13685 17326 20833 30605 52991 76817 16.5 10570 14376 22302 28228 33950 49877 86357 125186 1.0 24.6 33.6 52.0 65.8 79.2 116.2 201.2 291.8 17 10873 14789 22942 29039 34925 51308 88836 128778										1 1									
1.0 24.6 33.6 52.0 65.8 79.2 116.2 201.2 291.8 17 10873 14789 22942 29039 34925 51308 88836 128778																			
										1-1									
										- 1									

FIGURE 800 SAFETY RELIEF VALVE

APPLICATION DATA

- Liquid Filled Pressure Vessels & Systems
- Steam/air/gas Pressure Vessels & Systems
- Low temperature cryogenic systems
- Pumps, Tanks & Hydraulic Systems
- Pressure Reducing Stations
- Vacuum Systems
- OEM Equipment

APPLICABLE CODES

- ASME Section VIII "UV" for Liquid/Steam/Air/Gas
- API 527
- Canadian Registration # 0G0591.9C
- PED (Consult Factory)

FIGURE 800 SERIES

SIZES ¹/2" – 1¹/2" PRESSURES to 900 PSIG at 422°F

- Meets ASME VIII Code for Liquid, Steam, Air & Gas Service
- "UV" National Board Certified
- Short Blowdown
- No Ring Adjustments Required
- Unitized Bonnet Design
- All SS Internals/SS Springs
- Pivoting Disc Design
- Full Nozzle
- Soft Seat Design Available
- Wide Variety of Options

OPTIONS

- Screwed, Plain & Packed Caps
- BSP Connections
- Vacuum Service (Non-code)
- EPDM, Viton & TFE/25% Glass Soft Seats
- Low Temperature Cryogenic Service Trim*
- Test Reports Available

MODELS

- 810 Bronze Bonnet & Base, SS Disc
- 812 EPDM Seat on 810
- 814 Viton Seat on 810
- 816 TFE/25% Glass Seat on 810
- 820 Bronze Bonnet, SS Base & Disc
- 822 EPDM Seat on 820
- 824 Viton Seat on 820
- 826 TFE/25% Glass Seat on 820
- 860 316 SS Bonnet, Base & Disc
- 862 EPDM Seat on 860
- 864 Viton Seat on 860
- 866 TFE/25% Glass Seat on 860

VALVE RATINGS See Capacity Charts beginning on page 28

			- 1 5 5	5 1 5						
Model	Temperature*	Pressure PSIG (bar)								
Woder	°F (°C)	D,E Orifices	H Orifice							
810/812	-20-406 (-28.9-207.8)		5-250							
814/816	-20-400 (-28.9-204.4)	(0.34-17.24)								
820(1)	-20-422 (-28.9-216.7)									
822(1)/824(2)/826(2)	-20-400 (-28.9-204.4)	5-900	5-600	5-500						
860	-20-800 (-28.9-427)	(0.34-62.06)	(0.34-41.37)	(0.34-34.48)						
862/864/866	-20-400 (-28.9-204.4)									

Maximum Backpressure (Plain/Packed Cap) - 50 PSIG (3.45 barg) Vacuum Pressure Range - 10 to 30" HG (3.38.64 to 1015.92 mbarg) ⁽¹⁾ Maximum pressure for steam is 300 PSIG (20.67 barg).

⁽²⁾ Maximum pressure for steam is 250 PSIG (17.4 barg).

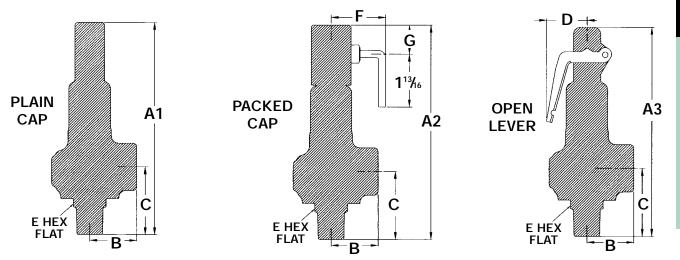
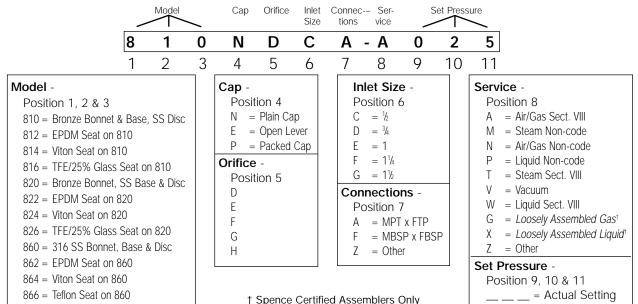


FIGURE 800 SERIES

SPECIFICATION

The valve shall meet the ASME Section VIII code for liquid, steam, air and gas services. It shall be "UV" National Board Certified. It shall have non-adjustable blowdown that shall be less than 10% for steam, air or gas and less than 20% for liquid. The valve shall consist of a unitized bonnet design guaranteeing proper guiding and making the valve extremely dependable in terms of pop

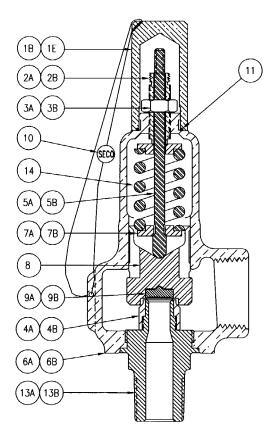
action, seat tightness and repeatability. The disc shall have a pivoting design which optimizes the seating performance. The valve shall have a full nozzle for optimum flow performance. Internal trim (excepting the base) shall be stainless steel. The valve shall meet the API 527 leakage standard requiring bubble tight shutoff up to 90% of set pressure.

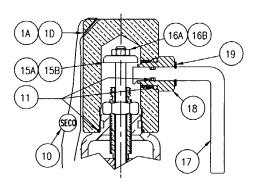


DIMENSIONS* inches (mm) **AND WEIGHTS** pounds (kg)

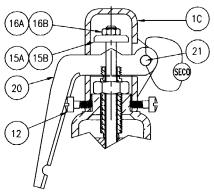
Model	Inlet	Orifice	Outlet	A1	A2	A3	В	С	D ⁽¹⁾	E	F	G	Weight
8**+DCA	1/2	D	1	7%	7℁	71⁄8	1%	21⁄4	1 ¹³ / ₃₂	11%	1 ¹⁵ /16	1/2	2.50
	(15)		(25)	(18.73)	(18.73)	(18.10)	(3.49)	(5.72)	(3.57)	(2.86)	(4.92)	(1.27)	(1.13)
8**+EDA	3/4	E	1¼	8%	8%	8¾	1%	2 5/16	1 ¹³ / ₃₂	1¼	1 ¹⁵ /16	11/16	4.50
	(20)		(32)	(22.54)	(22.54)	(22.23)	(4.13)	(5.87)	(3.57)	(3.18)	(4.92)	(2.70)	(2.04)
8**+FEA	1	F	1½	91/8	9%	9 ¾	1%	2 ¹³ /16	21⁄4	1½	1 ¹⁵ / ₁₆	11/16	7.00
	(25)		(40)	(25.08)	(25.08)	(24.77)	(4.76)	(7.14)	(5.72)	(3.81)	(4.92)	(2.70)	(3.18)
8**+GFA	1¼	G	2	12	12	11%	21⁄8	3	2¼	1%	21⁄8	1¾	11.50
	(32)		(50)	(30.48)	(30.48)	(30.16)	(5.40)	(7.62)	(5.72)	(4.76)	(5.40)	(4.45)	(5.22)
8**+HGA	1½	Н	2½	13%	13¾	13¼	2%	3½	3	2½	21⁄8	1¾	17.00
	(40)		(65)	(33.97)	(33.97)	(33.66)	(6.51)	(8.89)	(7.62)	(6.35)	(5.40)	(4.45)	(7.71)

*Accurate to ±1/8". **Use appropriate model number. ⁽¹⁾ Add 50% to D Dimension when lever is pulled out to manually operate valve. +Use appropriate Cap Letter


CODE SELECTION CHART



LAS - Loosely Assembled[†]



PLAIN CAP VALVE

PACKED CAP OPTION

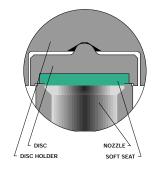
OPEN LEVER OPTION

FIGURE 800 SERIES

MATERIALS OF CONSTRUCTION

Ref	Part Name	Material
1A	Cap - Packed	Brass ASTM B16
1B	Cap - Plain	Brass ASTM B16
1C	Cap - Open Lever	Zinc Alloy
1D	Cap - Packed (860 Series)	316 SST ASTM A276
1E	Cap - Plain (860 Series)	316 SST ASTM A276
2A	Adjusting Bolt	Brass ASTM B16
2B	Adjusting Bolt (860 Series)	316 SST ASTM A276
3A	Adjusting Bolt Locknut	303 SST ASTM A582
3B	Adjusting Bolt Locknut	
	(860 Series)	316 SST ASTM A276
4A	Base Ring (Liquid Only)	Brass ASTM B16
4B	Base Ring	
	(Liquid Only - Series 860)	316 SST ASTM A276
5A	Spindle	304 SST ASTM A479
5B	Spindle (860 Series)	316 SST ASTM A276
6A	Bonnet	Bronze ASME SB62
6B	Bonnet	316 SST ASTM A351 CF8M
7A	Spring Washer	303 SST ASTM A582
7B	Spring Washer (860 Series)	316 SST ASTM A276
8	Disc Holder - Metal/Soft ¹	316 SST ASTM A351 CF8M
9A	Disc - Metal	316 SST ASTM A276
9B	Disc Assembly - Soft	316SST - EPDM/Viton/TFE
10	Seal and Wire	Lead and SST
11	O-rings, various ³	Buna-N/TFE
12	Lock Screw	Plated Steel
13A	Base ²	Brass/Brz, ASTM B283/ASME SB62
13B	Base ² (820 & 860 Series)	316 SST ASTM A276
14	Spring	316 SST or 302 SST or 17-7 SST
15A	Spindle Nut	Steel
15B	Spindle Nut (860 Series)	316 SST ASTM A276
16A	Spindle Nut Locknut	Plated Steel
16B	Spindle Nut Locknut	
	(860 Series)	316 SST ASTM A582
17	Lifting Lever Packed Cap	316 SST ASTM A276
18	Packed Cap Plug	316 SST ASTM A276
19	Cap Snap Ring	SST AMS 5813, S15700
20	Lifting Lever Open Cap	Plated Steel
21	Lifting Cap Pin Open Lever	Steel
22	Nameplate (Not Shown)	SST
23	Drive Screw (Not Shown)	SST

⁽¹⁾ ½, ¼ & 1 (15, 20, 25 mm) Metal and Soft Seat disc holders are different. 1¼ & 1½ (32 & 40mm) disc holders are identical.


 $^{(2)}$ ½ & ¾ (15, 20 mm) Gas and Liquid bases are identical. 1, 1¼ & 1½ (25, 32 & 40 mm) Liquid Bases differ from Gas bases.

⁽³⁾ TFE cap o-ring for models 816, 826, 866.

FIGURE 800 SERIES SOFT SEATS

Safety Valves with metal seats will start to leak at 90% of set pressure. A Spence Safety Valve equipped with a soft seat seals on both the metal and soft seats (see illustration). As a result, it will not begin to leak until system pressure reaches 95% of set pressure, minimizing system energy loss.

The o-rings in standard soft seat safety valves tend to blow out during discharge. Spence Soft Seat Safety Valves utilize a flat soft seat insert in the disc assembly of the valve that stays in place during operation, thus providing hassle-free operation.

There are many troublesome applications where using a Spence Soft Seat Safety Valve can reduce costly downtime and repair costs. Consider a Spence Soft Seat Safety Valve for:

- Operating very close to set pressure
- Heavy vibration
- Hard-to-hold fluids
- Occasional foreign particles
- Icing problems
- Pipe strain due to excessive discharge

SERVICE RECOMMENDATIONS*

AIR

EPDM Soft Seat WET - -20 to 422°F (-29 to 216°C) DRY - -20 to 250°F (-29 to121°C)

Acetone
Acetylene Gas
Beer
Bleach Liquor
Brake Fluid
Calcium Chloride
Carbon Monoxide
Carbonic Acid
Citric Acid
Denatured Alcohol
Ethylene Diamine

Freon 22 Hydrazine Lindol Hydraulic Fluid Lye Methanol Methyl Alcohol Methyl Butyl Ketone Nitrogen **STEAM** Sulfur Hexafluoride **WATER**

Viton Soft Seat -20 to 400°F (-29 to 204°C) Dowtherm A Iodine

Ethane	Kerosene
Ethyl Alcohol	Linseed Oil
Ethyl Chloride	Methane
Ethylene	Mineral Oils
Ethylene Glycol	Natural Gas
Fuel Oil	Petroleum Oil
Gasoline	Propane
Glucose	Propyl Alcohol
Glycerin	Propylene
Helium	Sulfur Dioxide
Hydraulic Oil	Turpentine
Hydrogen Gas	
	Ethyl Alcohol Ethyl Chloride Ethylene Glycol Fuel Oil Gasoline Glucose Glycerin Helium Hydraulic Oil

TFE/25% Glass Soft Seat

-400 to 400°F (-240 to 204°C)

Helium Hydrogen Nitrogen VALVES

*These recommendations should be used as a guide only. It is the sole responsibility of the user to select suitable materials.

SATURATED STEAM CAPACITY CHART MODEL 800

ASME Section VIII "UV" 90% rated at 10% Overpressure LBS/HR (KGS/HR) Flow Coefficient = .9 x .975 = .878 LBS/HR KGS/HR

VALVES

FIGURE 800 SERIES STEAM CAPACITY

		LDJ			
Set		Ori	fice Area ir	1 ²	
Pressure	D	E	F	G	Н
PSIG	0.1188	0.2116	0.3318	0.5424	0.8479
5 *	122	217	341	557	870
10 *	149	265	416	679	1062
15	176	313	491	802	1254
20	203	361	566	925	1445
25	229	409	641	1047	1637
30	256	456	716	1170	1829
			798		
35	286	509		1305	2040
40	315	562	881	1440	2251
45	345	614	963	1575	2461
50	374	667	1046	1709	2672
55	404	720	1128	1844	2883
60	434	772	1211	1979	3094
65	463	825	1293	2114	3305
70	493	877	1376	2249	3516
75	522	930	1458	2384	3727
80	552	983	1541	2519	3937
85	581	1035	1623	2654	4148
90	611	1088	1706	2789	4359
95	640	1140	1788	2923	4570
100	670	1193	1871	3058	4781
105	699	1246	1953	3193	4701
110	729	1298	2036	3328	5203
115	758	1351	2118	3463	5414
120	788	1404	2201	3598	5624
125	818	1456	2283	3733	5835
130	847	1509	2366	3868	6046
135	877	1561	2448	4003	6257
140	906	1614	2531	4137	6468
145	936	1667	2614	4272	6679
150	965	1719	2696	4407	6890
155	995	1772	2779	4542	7100
160	1024	1825	2861	4677	7311
165	1054	1877	2944	4812	7522
170	1083	1930	3026	4947	7733
175	1113	1982	3109	5082	7944
180	1143	2035	3191	5217	8155
				5352	
185	1172	2088	3274		8366
190	1202	2140	3356	5486	8577
195	1231	2193	3439	5621	8787
200	1261	2246	3521	5756	8998
205	1290	2298	3604	5891	9209
210	1320	2351	3686	6026	9420
215	1349	2403	3769	6161	9631
220	1379	2456	3851	6296	9842
225	1408	2509	3934	6431	10053
230	1438	2561	4016	6566	10263
235	1468	2614	4099	6700	10474
240	1497	2667	4181	6835	10685
245	1527	2719	4264	6970	10896
250	1556	2772	4346	7105	11107
255	1586	2824	4429	7240	11318
260	1615	2877	4511	7375	11529
265	1645	2930	4594	7510	11740
205		2930	4094		11950
	1674			7645	
275	1704	3035	4759	7780	12161
280	1733	3088	4841	7914	12372
285	1763	3140	4924	8049	12583
290	1793	3193	5007	8184	12794
295	1822	3245	5089	8319	13005
300	1852	3298	5172	8454	13216
1.0	6.0	10.5	16.5	27.0	42.2

Set		Or	ifice Area	e Area cm ²				
Pressure	D	E	F	G	Н			
Barg	.766	1.365	2.141	3.499	5.47			
0.4*	57	102	160	261	409			
0.6*	64	115	180	294	459			
0.8*	71	127	199	326	509			
1*	78	140	219	358	560			
1.2	86	152	239	390	610			
1.4	93	165	259	423	661			
1.6	100	177	278	455	711			
1.8	107	190	298	487	762			
2	114	203	318	519	812			
2.2	121	216	339	554	866			
2.4	129	230	360	589	921			
2.6	137	244	382	625	977			
2.8	145	258	404	660	1032			
3	152	271	426	696	1088			
3.2	160	285	447	731	1143			
3.4	168	299	469	767	1199			
3.6	176	313	491	802	1254			
3.8	183	327	512	838	1309			
4	191	341	534	873	1365			
4.2	199	354	556	909	1420			
4.4	207	368	578	944	1476			
4.6	215	382	599	980	1531			
4.8	222	396	621	1015	1587			
5	230	410	643	1051	1642			
5.2	238	424	664	1086	1698			
5.4	246	438	686	1122	1753			
5.6	253	451	708	1157	1809			
5.8	261	465	729	1192	1864			
6	269	479	751	1228	1920			
6.2	277	493	773	1263	1975			
6.4	284	507	795	1299	2031			
6.6	292	521	816	1334	2086			
7	308	548	860	1405	2197			
7.5	327	583	914	1494	2336			
8	347	617	968	1583	2474			
8.5	366	652	1022	1671	2613			
9	386	687	1077	1760	2752			
9.5	405	721	1131	1849	2890			
10 10 F	424	756 790	1185	1938	3029			
10.5	444	825	1240 1294	2026 2115	3168			
11	463	860		2115	3306			
11.5 12	483 502	860 894	1348 1402	2204	3445 3584			
12	502	929	1402	2381	3722			
12.5	541	929	1457	2301	3861			
13.5	560	904 998	1565	2559	4000			
13.5	580	1033	1619	2647	4138			
14.5	599	1055	1674	2736	4277			
15	619	1102	1728	2825	4416			
15.5	638	1137	1782	2913	4554			
16	658	1171	1836	3002	4693			
16.5	677	1206	1891	3091	4832			
17	696	1240	1945	3179	4970			
17.5	716	1275	1999	3268	5109			
18	735	1310	2053	3357	5248			
18.5	755	1344	2108	3446	5386			
19	774	1379	2162	3534	5525			
19.5	794	1413	2216	3623	5664			
20	813	1448	2271	3712	5802			
20.5	832	1483	2325	3800	5941			
0.1	3.9	6.9	10.9	17.7	27.7			

AIR CAPACITY CHART – MODEL 800 ASME Section VIII "UV"

90% rated at 10% Overpressure SCFM at 60°F **

Flow Coefficient = $.9 \times .975 = .878$ SCFM

							_	-							
Set		0	rifice Area	in ²			Set		0	rifice Area	in ²			Set	Orifice
Pressure	D	E	F	G	Н		Pressure	D	E	F	G	Н	1	Pressure	D
PSIG	0.1188	0.2116	0.3318	0.5424	0.8479		PSIG	0.1188	0.2116	0.3318	0.5424	0.8479		PSIG	0.1188
5*	43	77	121	198	310		305	670	1099	1723	2817	4404		605	1301
10 *	53	94	148	242	378		310	680	1116	1750	2861	4472		610	1311
15	63	111	175	285	446		315	691	1133	1777	2904	4540		615	1322
20	72	128	201	329	514		320	701	1249	1958	3201	5004		620	1332
25	82	145	228	373	583		325	712	1268	1988	3249	5079		625	1343
30	91	162	255	416	651		330	722	1286	2017	3297	5154		630	1353
35	102	181	284	464	726		335	733	1305	2046	3345	5229		635	1364
40	112	200	313	512	801		340	743	1324	2076	3393	5304		640	1374
45	123	219	343	560	876		345	754	1342	2105	3441	5380		645	1385
50	133	237	372	608	951		350	764	1361	2134	3489	5455		650	1395
55	144	256	402	656	1026		355	775	1380	2164	3537	5530		655	1406
60	154	275	431	704	1101		360	785	1399	2193	3585	5605		660	1416
65	165	294	460	753	1176		365	796	1417	2223	3633	5680		665	1427
70	175	312	490	801	1251		370	806	1436	2252	3681	5755		670	1437
75	186	331	519	849	1326		375	817	1455	2281	3729	5830		675	1448
80	196	350	548	897	1402		380	827	1474	2311	3777	5905		680	1458
85	207	368	578	945	1477		385	838	1492	2340	3825	5980		685	1469
90	217	387	607	993	1552		390	848	1511	2369	3873	6055		690	1479
95	228	406	637	1041	1627		395	859	1530	2399	3921	6130		695	1490
100	238	425	666	1089	1702		400	869	1549	2428	3969	6205		700	1500
105	249	443	695	1137	1777		405	880	1567	2458	4017	6280		705	1511
110	259	462	725	1185	1852		410	890	1586	2487	4065	6355		710	1521
115	270	481	754	1233	1927		415	901	1605	2516	4113	6430		715	1532
														715	
120	280	500	783	1281	2002		420	911	1623	2546	4161	6505		720	1542
125	291	518	813	1329	2077		425	922	1642	2575	4209	6580		725	1553
130	302	537	842	1377	2152		430	933	1661	2604	4257	6655		730	1563
														730	
135	312	556	872	1425	2227		435	943	1680	2634	4305	6731		735	1574
140	323	575	901	1473	2302		440	954	1698	2663	4354	6806		740	1585
145	333	593	930	1521	2377		445	964	1717	2693	4402	6881		745	1595
150	344	612	960	1569	2452		450	975	1736	2722	4450	6956		750	1606
155	354	631	989	1617	2527		455	985	1755	2751	4498	7031		755	1616
160	365	649	1018	1665	2602		460	996	1773	2781	4546	7106		760	1627
165	375	668	1048	1713	2677		465	1006	1792	2810	4594	7181		765	1637
170	386	687	1077	1761	2753		470	1017	1811	2839	4642	7256		770	1648
175	396	706	1106	1809	2828		475	1027	1829	2869	4690	7331		775	1658
180	407	724	1136	1857	2903		480	1038	1848	2898	4738	7406		780	1669
185	417	743	1165	1905	2978		485		1867	2927	4786	7481		785	1679
								1048							
190	428	762	1195	1953	3053		490	1059	1886	2957	4834	7556		790	1690
195	438	781	1224	2001	3128		495	1069	1904	2986	4882	7631		795	1700
200	449	799	1253	2049	3203		500	1080	1923	3016	4930	7706		800	1711
												,,,00			
205	459	818	1283	2097	3278		505	1090	1942	3045	4978	-		805	1721
210	470	837	1312	2145	3353		510	1101	1961	3074	5026	-		810	1732
215	480	855	1341	2193	3428		515	1111	1979	3104	5074	-		815	1742
220	491	874	1371	2241	3503		520	1122	1998	3133	5122			820	1753
												-			
225	501	893	1400	2289	3578		525	1132	2017	3162	5170	-		825	1763
230	512	912	1430	2337	3653		530	1143	2036	3192	5218	-		830	1774
235	522	930	1459	2385	3728		535	1153	2054	3221	5266	-		835	1784
240	533	949	1488	2433	3803		540	1164	2073	3251	5314	-		840	1795
245	543	968	1518	2481	3878		545	1174	2092	3280	5362	-		845	1805
250	554	987	1547	2529	3953		550	1185	2110	3309	5410	-		850	1816
255	564	1005	1576	2527	4028		555	1195	2129	3339	5458	-		855	1826
260	575	1024	1606	2625	4104		560	1206	2148	3368	5506	-		860	1837
265	585	1043	1635	2673	4179		565	1216	2167	3397	5554	-		865	1847
270	596	1062	1665	2721	4254		570	1227	2185	3427	5602	-		870	1858
275	606	1080	1694	2769	4329		575	1237	2204	3456	5650	-		875	1868
280	617	1099	1723	2817	4404		580	1248	2223	3486	5698	-		880	1879
285	628	1118	1753	2865	4479		585	1259	2242	3515	5746	-		885	1889
290	638	1136	1782	2913	4554		590	1269	2260	3544				890	1900
											5794	-			
295	649	1155	1811	2961	4629		595	1280	2279	3574	5842	-		895	1911
300	659	1174	1841	3009	4704		600	1290	2298	3603	5890	-		900	1921
1.0	2.2	3.6	6.0	9.6	15.0		1.0	2.2	3.6	6.0	9.6	15.0	1	1.0	2.2
1.0	2.2	3.0	0.0	7.0	13.0	I	1.0	2.2	J.U	0.0	7.0	13.0	1	1.0	L.L

VALVES

Orifice Area in² D

Ε

0.2116

3.6

* Pressure settings below 15 PSIG (1.034 barg) are non code.

- 29 -

AIR CAPACITY CHART - MODEL 800 - CONT'D. ASME Section VIII "UV" 90% rated at 10% Overpressure NM³/HR at 15.68°C** Flow Coefficient = $.9 \times .975 = .878$

NM³/HR

						IN				
Set		Or	ifice Area o	cm ²		Set		Or	ifice Area o	cm ²
Pressure	D	E	F	G	Н	Pressure	D	E	F	(
Barg	.766	1.365	2.141	3.499	5.47	Barg	.766	1.365	2.141	3.4
0.4*	76	136	213	349	545	12.4	690	1229	1928	3
0.6*	86	153	240	392	612	12.6	701	1248	1957	3
0.8*	95	170	266	435	679	12.8	711	1266	1986	3
1*	105	186	292	478	747	13	721	1285	2015	3
1.2	114	203	318	521	814	13.5	747	1331	2087	3
1.4	123	220	345	564	881	14	773	1377	2159	3
1.6	133	237	371	607	948	14.5	799	1423	2232	3
1.8	142	253	397	650	1016	15	825	1469	2304	3
2	152	270	424	693	1083	15.5	851	1516	2376	3
2.2	162	288	452	738	1154	16	877	1562	2449	4
2.4	172	307	481	786	1228	16.5	903	1608	2521	4
2.6	182	325	510	833	1302	17	929	1654	2594	4
2.8	193	343	539	880	1376	17.5	955	1700	2666	4
3	203	362	568	928	1450	18	980	1746	2738	4
3.2	214	380	596	975	1524	18.5	1006	1792	2811	4
3.4	224	399	625	1022	1598	19	1032	1839	2883	4
3.6	234	417	654	1070	1672	19.5	1058	1885	2955	4
3.8	245	436	683	1117	1746	20	1084	1931	3028	4
4	255	454	712	1164	1820	20.5	1110	1977	3100	5
4.2	265	473	741	1212	1894	21	1136	2023	3172	5
4.4	276	491	770	1259	1968	21.5	1162	2069	3245	5
4.6	286	510	799	1306	2042	22	1188	2115	3317	5
4.8	296	528	828	1354	2116	22.5	1214	2162	3389	5
5	307	547	857	1401	2190	23	1240	2208	3462	5
5.2	317	565	886	1448	2264	23.5	1265	2254	3534	5
5.4	328	583	915	1496	2338	24	1291	2300	3607	5
5.6	338	602	944	1543	2412	24.5	1317	2346	3679	6
5.8	348	620	973	1590	2486	25	1343	2392	3751	6
6	359	639	1002	1637	2560	25.5	1369	2438	3824	6
6.2	369	657	1031	1685	2634	26	1395	2485	3896	6
6.4	379	676	1060	1732	2708	26.5	1421	2531	3968	6
6.6	390	694	1088	1779	2782	27	1447	2577	4041	6
6.8	400	713	1117	1827	2856	27.5	1473	2623	4113	6
7	410	731	1146	1874	2930	28	1499	2669	4185	6
7.2	421	750	1175	1921	3004	28.5	1524	2715	4258	6
7.4	431	768	1204	1969	3077	29	1550	2761	4330	7
7.6	442	786	1233	2016	3151	29.5	1576	2808	4402	7
7.8	452	805	1262	2063	3225	30	1602	2854	4475	7
8	462	823	1291	2111	3299	30.5	1628	2900	4547	7
8.2	473	842	1320	2158	3373	31	1654	2946	4620	7
8.4	483	860	1349	2205	3447	31.5	1680	2992	4692	7
8.6	493	879	1378	2253	3521	32	1706	3038	4764	7
8.8	504	897	1407	2300	3595	32.5	1732	3084	4837	7
9	514	916	1436	2347	3669	33	1758	3131	4909	8
9.2	524	934	1465	2394	3743	33.5	1784	3177	4981	8
9.4	535	953	1494	2442	3817	34	1809	3223	5054	8
9.6	545	971	1523	2489	3891	34.5	1835	3269	5126	8
9.8	556	990	1552	2536	3965	35	1861	3315	5198	8
9.0 10	566	1008	1552	2530	4039	35.5	1887	3361	5196	8
10.2	576	1008	1609	2564 2631	4039	30.0 36	1913	3408	5343	8
10.2	576	1020	1638	2678	4113	36.5	1915	3408 3454	5416	8
10.4 10.6	587 597	1045	1638	2678 2726	4187 4261	36.5 37	1939	3454 3500	5416 5488	8
										8
10.8	607 419	1082	1696 1725	2773	4335	37.5	1991 2017	3546	5560 5422	
11 11 0	618	1100	1725 1754	2820	4409	38 29 5	2017	3592	5633 5705	9
11.2	628	1119	1754	2868	4483	38.5	2043	3638	5705	9
11.4	638	1137	1783	2915	4557	39 20 F	2069	3684	5777	9
11.6 11.0	649 450	1156 1174	1812	2962	4631	39.5	2094	3731	5850 5000	9
11.8 12	659 670	1174 1103	1841 1870	3010 3057	4705 4779	40 40 5	2120 2146	3777 3823	5922 500/	9
1/ 1	0/11	1 1944		51157	. ////9	/1115	/1/10	<u> </u>	- <u>599/</u>	

	Orifice A	roo cm ²						
Set	Orifice Area cm ²							
Pressure Barg	.766	L 1.365						
багу 41.5	2198	3915						
41.5	2190	3961						
42	2224	4007						
42.5	2250	4007						
43.5	2302	4100						
44	2302	4100						
44.5	2354	4192						
45	2379	4238						
45.5	2405	4284						
46	2431	4330						
46.5	2457	4377						
47	2483	4423						
47.5	2509	4469						
48	2535	4515						
48.5	2561	4561						
49	2587	4607						
49.5	2613	4653						
50	2639	4700						
50.5	2664	4746						
51	2690	4792						
51.5	2716	4838						
52	2742	4884						
52.5	2768	4930						
53	2794	4976						
53.5	2820	5023						
54	2846	5069						
54.5	2872	5115						
55	2898	5161						
55.5	2923	5207						
56 56.5	2949 2975	5253 5299						
56.5 57	2975 3001	5299 5346						
57.5	3027	5392						
57.5 58	3027	5438						
58.5	3079	5484						
50.5 59	3105	5530						
59.5	3131	5576						
60	3157	5622						
60.5	3183	5669						
61	3208	5715						
61.5	3234	5761						
62	3260	5807						
0.1	5.2	9.2						

Γ

G

3.499

23.6

Н

5.47

_

_

_

_

_

_

_

_

_

_

_

_

12.2

0.1

5.2

14.6

23.6

5.2

9.2

14.6

40.5

0.1

**For other temperatures, please use temperature correction factor.

FIGURE 800 SERIES

AIR CAPACITY

WATER CAPACITY CHART - MODEL 800

ASME Section VIII "UV" 90% rated at 10% Overpressure GPM at 60°F** Flow Coefficient = .9 x .836 = .752

GPM

Cat		0	ifian Area	l=?			Cat		0	ifian Area	lm 2		1	Cat	Orifica	Area in?
Set			rifice Area				Set			rifice Area				Set		Area in ²
Pressure	D	E	F	G	Н		Pressure	D	E	F	G	Н		Pressure	D	E
PSIG	0.1188	0.2116	0.3318	0.5424	0.8479		PSIG	0.1188	0.2116	0.3318	0.5424	0.8479		PSIG	0.1188	0.2116
5 *	9.6	17.1	26.8	43.9	68.6		305	62.2	110.9	173.8	284.2	444.3		605	87.7	156.1
10 *	12.3	21.8	34.2	55.9	87.4		310	62.8	111.8	175.3	286.5	447.9		610	88.0	156.8
15	14.4	25.7	40.3	65.8	102.9		315	63.3	112.7	176.7	288.8	451.5		615	88.4	157.4
20	16.3	29.0	45.5	74.4	116.3		320	63.8	113.6	178.1	291.1	455.0		620	88.7	158.1
25	18.0	32.0	50.2	82.1	128.3		325	64.3	114.4	179.5	293.4	458.6		625	89.1	158.7
30	19.5	34.8	54.5	89.1	139.3		330	64.7	115.3	180.8	295.6	462.1		630	89.5	159.3
35	21.1	37.6	58.9	96.3	150.5		335	65.2	116.2	182.2	297.8	465.6		635	89.8	160.0
40	22.5	40.1	63.0	102.9	160.9		340	65.7	117.1	183.6	300.1	469.1		640	90.2	160.6
45	23.9	42.6	66.8	102.7	170.6		345	66.2	117.9	184.9	302.3	472.5		645	90.5	161.2
50	25.2	44.9	70.4	115.1	179.9		350	66.7	118.8	186.2	304.4	475.9		650	90.9	161.8
55	26.4	47.1	73.8	120.7	188.7		355	67.2	119.6	187.6	306.6	479.3		655	91.2	162.5
60	27.6	49.2	77.1	126.0	197.0		360	67.6	120.4	188.9	308.8	482.7		660	91.6	163.1
65	28.7	51.2	80.3	131.2	205.1		365	68.1	121.3	190.2	310.9	486.0		665	91.9	163.7
70	29.8	53.1	83.3	136.1	212.8		370	68.6	122.1	191.5	313.0	489.3		670	92.3	164.3
75	30.9	55.0	86.2	140.9	220.3		375	69.0	122.9	192.8	315.1	492.6		675	92.6	164.9
80	31.9	56.8	89.0	145.5	227.5		380	69.5	123.8	194.0	317.2	495.9		680	92.9	165.5
85	32.9	58.5	91.8	150.0	234.5		385	69.9	124.6	195.3	319.3	499.1		685	93.3	166.1
90	33.8	60.2	94.4	154.4	241.3		390	70.4	125.4	196.6	321.4	502.4		690	93.6	166.8
95	34.7	61.9	97.0	158.6	247.9		395	70.8	126.2	197.8	323.4	505.6		695	94.0	167.4
100	35.6	63.5	99.5	162.7	254.4		400	71.3	127.0	199.1	325.5	508.8		700	94.3	168.0
105	36.5	65.1	102.0	166.7	260.7		405	71.7	127.8	200.3	327.5	511.9		705	94.6	168.6
110	37.4	66.6	102.0	170.7	266.8		403	72.2	128.5	200.5	329.5	515.1		703	95.0	169.2
											331.5	518.2				169.7
115	38.2	68.1	106.7	174.5	272.8		415	72.6	129.3	202.8				715	95.3	
120	39.0	69.5	109.0	178.3	278.7		420	73.0	130.1	204.0	333.5	521.3		720	95.6	170.3
125	39.8	71.0	111.3	181.9	284.4		425	73.5	130.9	205.2	335.5	524.4		725	96.0	170.9
130	40.6	72.4	113.5	185.5	290.0		430	73.9	131.6	206.4	337.4	527.5		730	96.3	171.5
135	41.4	73.8	115.7	189.1	295.6		435	74.3	132.4	207.6	339.4	530.6		735	96.6	172.1
140	42.2	75.1	117.8	192.5	301.0		440	74.8	133.2	208.8	341.3	533.6		740	97.0	172.7
145	42.9	76.4	119.9	195.9	306.3		445	75.2	133.9	210.0	343.3	536.6		745	97.3	173.3
150	43.7	77.7	121.9	199.3	311.6		450	75.6	134.7	211.2	345.2	539.6		750	97.6	173.9
155	44.4	79.0	123.9	202.6	316.7		455	76.0	135.4	212.3	347.1	542.6		755	97.9	174.4
160	45.1	80.3	125.9	205.8	321.8		460	76.4	136.2	213.5	349.0	545.6		760	98.3	175.0
165	45.8	81.5	127.9	209.0	326.8		465	76.9	136.9	214.7	350.9	548.5		765	98.6	175.6
170	46.5	82.8	129.8	212.2	331.7		470	77.3	137.6	215.8	352.8	551.5		770	98.9	176.2
175	47.1	84.0	131.7	215.3	336.5		475	77.7	138.4	217.0	354.7	554.4		775	99.2	176.7
180	47.8	85.2	133.6	218.3	341.3		480	78.1	139.1	217.0	356.5	557.3		780	99.5	177.3
185	48.5	86.3	135.4	210.3	346.0		485	78.5	139.8	210.1	358.4	560.2		785	99.9	177.9
185																
	49.1	87.5	137.2	224.3	350.6		490	78.9	140.5	220.4	360.2	563.1		790	100.2	178.4
195	49.8	88.6	139.0	227.2	355.2		495	79.3	141.2	221.5	362.0	566.0		795	100.5	179.0
200	50.4	89.8	140.8	230.1	359.7		500	79.7	142.0	222.6	363.9	568.8		800	100.8	179.6
205	51.0	90.9	142.5	233.0	364.2		505	80.1	142.7	223.7	365.7	-		805	101.1	180.1
210	51.6	92.0	144.3	235.8	368.6		510	80.5	143.4	224.8	367.5	-		810	101.4	180.7
215	52.3	93.1	146.0	238.6	373.0		515	80.9	144.1	225.9	369.3	-		815	101.7	181.2
220	52.9	94.2	147.6	241.4	377.3		520	81.3	144.8	227.0	371.1	-		820	102.1	181.8
225	53.5	95.2	149.3	244.1	381.6		525	81.7	145.5	228.1	372.9	-		825	102.4	182.3
230	54.1	96.3	151.0	246.8	385.8		530	82.1	146.1	229.2	374.6	-		830	102.7	182.9
235	54.6	97.3	152.6	249.5	390.0		535	82.4	146.8	230.2	376.4	-		835	103.0	183.4
240	55.2	98.3	154.2	252.1	394.1		540	82.8	147.5	231.3	378.1	-		840	103.3	184.0
245	55.8	99.4	155.8	254.7	398.2		545	83.2	148.2	232.4	379.9	-		845	103.6	184.5
250			157.4	257.3	402.2		550			233.5	381.6	-		850	103.0	185.1
	56.4	100.4						83.6	148.9							
255	56.9	101.4	159.0	259.9	406.2		555	84.0	149.6	234.5	383.4	-		855	104.2	185.6
260	57.5	102.4	160.5	262.4	410.2		560	84.3	150.2	235.6	385.1	-		860	104.5	186.2
265	58.0	103.3	162.0	264.9	414.1		565	84.7	150.9	236.6	386.8	-		865	104.8	186.7
270	58.6	104.3	163.6	267.4	418.0		570	85.1	151.6	237.7	388.5	-		870	105.1	187.2
275	59.1	105.3	165.1	269.9	421.8		575	85.5	152.2	238.7	390.2	-		875	105.4	187.8
280	59.6	106.2	166.6	272.3	425.7		580	85.8	152.9	239.7	391.9	-		880	105.7	188.3
285	60.2	107.2	168.0	274.7	429.4		585	86.2	153.5	240.8	393.6	-		885	106.0	188.9
290	60.7	108.1	169.5	277.1	433.2		590	86.6	154.2	241.8	395.3	-		890	106.3	189.4
295	61.2	109.0	171.0	279.5	436.9		595	86.9	154.9	242.8	396.9	-		895	106.6	189.9
300	61.7	110.0	172.4	281.9	440.6		600	87.3	155.5	243.8	398.6	-		900	106.9	190.4
1.0	0.10	0.20	0.28	0.48	0.74		1.0	0.10	0.20	0.28	0.48	0.74	1	1.0	0.10	0.20
	ottings hol					I								ico tomporati		

VALVES

* Pressure settings below 15 PSIG (1.034 barg) are non code.

**For other temperatures, please use temperature correction factor.

WATER CAPACITY CHART - MODEL 800 - CONT'D. ASME Section VIII "UV"

90% rated at 10% Overpressure NM³/HR at 15.68°C** Flow Coefficient = .9 x .836 = .752

NM³/HR

-
>

Set

Pressure

D

S

FIGURE 800 SERIES WATER CAPACITY

Barg	.766	ь 1.365	F 2.141	G 3.499	н 5.47
0.4*	2.3	4.1	6.4	10.5	16.3
0.6*	2.6	4.7	7.4	12.1	18.8
0.8*	2.0	5.3	8.2	13.5	21
1*	3.2	5.8	9	14.7	23
1.2	3.5	6.2	9.7	15.9	24.9
1.4	3.7	6.6	10.4	17	26.6
1.4	4	7	11	18	28.2
1.8	4.2	7.4	11.6	19	20.2
2	4.4	7.8	12.2	19.9	31.2
2.2	4.6	8.1	12.8	20.9	32.6
2.4	4.8	8.5	13.3	21.8	34.1
2.6	5	8.9	13.9	21.0	35.5
2.8	5.2	9.2	14.4	23.5	36.8
3	5.3	9.5	14.9	24.4	38.1
3.2	5.5	9.8	15.4	25.2	39.4
3.4	5.7	10.1	15.9	25.9	40.6
3.6	5.8	10.4	16.3	26.7	41.7
3.8	6	10.7	16.8	27.4	42.9
4	6.2	11	17.2	28.1	44
4.2	6.3	11.3	17.6	28.8	45.1
4.4	6.5	11.5	18.1	29.5	46.1
4.6	6.6	11.8	18.5	30.2	47.2
4.8	6.8	12	18.9	30.8	48.2
5	6.9	12.3	19.2	31.5	49.2
5.2	7	12.5	19.6	32.1	50.2
5.4	7.2	12.8	20	32.7	51.1
5.6	7.3	13	20.4	33.3	52.1
5.8	7.4	13.2	20.7	33.9	53
6	7.5	13.4	21.1	34.5	53.9
6.2	7.7	13.7	21.4	35	54.8
6.4	7.8	13.9	21.8	35.6	55.7
6.6	7.9	14.1	22.1	36.2	56.5
6.8	8	14.3	22.4	36.7	57.4
7	8.2	14.5	22.8	37.2	58.2
7.2	8.3	14.7	23.1	37.8	59
7.4	8.4	14.9	23.4	38.3	59.8
7.6	8.5	15.1	23.7	38.8	60.6
7.8	8.6	15.3	24	39.3	61.4
8	8.7	15.5	24.3	39.8	62.2
8.2	8.8	15.7	24.7	40.3	63
8.4	8.9	15.9	24.9	40.8	63.8
8.6	9	16.1	25.2	41.3	64.5
8.8	9.1	16.3	25.5	41.7	65.3
9	9.2	16.5	25.8	42.2	66
9.2	9.3	16.7	26.1	42.7	66.7
9.4	9.4	16.8	26.4	43.1	67.4
9.6	9.5	17	26.7	43.6	68.2
9.8	9.6	17.2	26.9	44.1	68.9
10	9.7	17.4	27.2	44.5	69.6
10.2	9.8	17.5	27.5	44.9	70.3
10.4	9.9	17.7	27.8	45.4	70.9
10.6	10	17.9	28	45.8	71.6
10.8	10.1	18	28.3	46.2	72.3
11	10.2	18.2	28.6	46.7	73
11.2	10.3	18.4	28.8	47.1	73.6
11.4	10.4	18.5	29.1	47.5	74.3
11.6	10.5	18.7	29.3	47.9	74.9
11.8	10.6	18.9	29.6	48.3	75.6
12	10.7	19 10.2	29.8	48.7	76.2
12.2	10.8	19.2	30.1	49.2	76.8
.1	0.02	0.05	0.06	0.11	0.17

Orifice Area cm²

G H

F

Е

Set	_		ifice Area o		
Pressure	D	E	F	G	H
Barg	.766	1.365	2.141	3.499	5.47
12.4	10.9	19.3	30.3	49.6	77.5
12.6	10.9	19.5	30.6	50	78.1
12.8	11	19.6	30.8	50.3	78.7
13	11.1	19.8	31	50.7	79.3
13.5	11.3	20.2	31.6	51.7	80.8
14	11.5	20.5	32.2	52.7	82.3
14.5	11.7	20.9	32.8	53.6	83.8
15	11.9	21.3	33.3	54.5	85.2
15.5	12.1	21.6	33.9	55.4	86.6
16	12.3	22	34.4	56.3	88
16.5	12.5	22.3	35	57.2	89.4
17	12.7	22.6	35.5	58	90.7
17.5	12.9	23	36	58.9	92
18	13.1	23.3	36.5	59.7	93.3
18.5	13.3	23.6	37	60.5	94.6
19	13.4	23.9	37.5	61.3	95.9
19.5	13.6	24.2	38	62.1	97.1
20	13.8	24.6	38.5	62.9	98.4
20.5	14	24.9	39	63.7	99.6
21	14.1	25.2	39.4	64.5	100.8
21.5	14.3	25.5	39.9	65.2	100.0
22	14.5	25.7	40.4	66	103.2
22.5	14.6	26	40.4	66.7	103.2
22.5	14.0	26.3	40.0	67.5	104.5
23.5	14.0	26.6	41.7	68.2	105.5
23.5	14.9	26.9	41.7	68.9	100.0
24 24.5	15.1	20.9	42.2 42.6	69.7	107.8
25	15.4	27.4	43	70.4	110
25.5	15.6	27.7	43.5	71.1	111.1
26	15.7	28	43.9	71.8	112.2
26.5	15.9	28.3	44.3	72.4	113.2
27	16	28.5	44.7	73.1	114.3
27.5	16.2	28.8	45.1	73.8	115.4
28	16.3	29	45.6	74.5	116.4
28.5	16.5	29.3	46	75.1	117.4
29	16.6	29.6	46.4	75.8	118.5
29.5	16.7	29.8	46.8	76.4	119.5
30	16.9	30.1	47.1	77.1	120.5
30.5	17	30.3	47.5	77.7	121.5
31	17.2	30.6	47.9	78.4	122.5
31.5	17.3	30.8	48.3	79	123.5
32	17.4	31.1	48.7	79.6	124.4
32.5	17.6	31.3	49.1	80.2	125.4
33	17.7	31.5	49.5	80.8	126.4
33.5	17.8	31.8	49.8	81.4	127.3
34	18	32	50.2	82.1	128.3
34.5	18.1	32.2	50.6	82.7	129.2
35	18.2	32.5	50.9	83.3	-
35.5	18.4	32.7	51.3	83.8	-
36	18.5	32.9	51.6	84.4	-
36.5	18.6	33.2	52	85	-
37	18.7	33.4	52.4	85.6	-
37.5	18.9	33.6	52.7	86.2	-
38	19	33.8	53.1	86.7	-
38.5	19.1	34.1	53.4	87.3	
39	19.2	34.3	53.8	87.9	
39 39.5	19.2	34.5 34.5	53.0 54.1	88.4	-
39.5 40			54.1 54.4	88.4 89	· ·
	19.5 10.4	34.7			-
40.5	19.6 10.7	34.9	54.8 55.1	89.6 00.1	-
41	19.7	35.2	55.1	90.1	-
.1	0.02	0.05	0.06	0.11	0.17

Set	Orifice A	rea cm ²
Pressure	D	E
Barg	.766	1.365
41.5	19.9	35.4
42	20	35.6
42.5	20.1	35.8
43	20.2	36
43.5	20.3	36.2
44	20.4	36.4
44.5	20.6	36.6
45	20.0	36.8
45.5	20.8	37
46	20.0	37.2
46.5	20.7	37.4
40.5	21.1	37.4
47		37.8
	21.2	
48	21.4	38
48.5	21.5	38.2
49	21.6	38.4
49.5	21.7	38.6
50	21.8	38.8
50.5	21.9	39
51	22	39.2
51.5	22.1	39.4
52	22.2	39.6
52.5	22.3	39.8
53	22.4	40
53.5	22.5	40.2
54	22.6	40.3
54.5	22.8	40.5
55	22.9	40.7
55.5	23	40.9
56	23.1	41.1
56.5	23.2	41.3
57	23.3	41.4
57.5	23.4	41.6
58	23.5	41.8
58.5	23.6	42
59	23.7	42.2
59.5	23.8	42.3
60	23.9	42.5
60.5	23.7	42.7
61	24.1	42.9
61.5	24.1	43.1
62	24.2	43.1
.1	0.02	0.05
	0102	0.00

**For other temperatures, please use temperature correction factor.

WATER CAPACITY CHART - MODEL 800 - CONT'D **NON CODE** 90% rated at 25% Overpressure GPM at 60°F** Flow Coefficient = .9 x .836 = .752

GPM

Set		0	rifice Area i	in ²		1	Set		0	rifice Area i	in ²		1	Set	Orifice	Area in ²
Pressure	D	E	F	G	Н		Pressure	D	E	F	G	Н		Pressure	D	E
PSIG	0.1188	0.2116	0.3318	0.5424	0.8479		PSIG	0.1188	0.2116	0.3318	0.5424	0.8479		PSIG	0.1188	0.2116
5	8.5	15.1	23.7	38.8	60.6	1	305	66.4	118.2	185.3	302.9	473.6		605	93.5	166.5
10	12.0	21.4	33.6	54.9	85.8		310	66.9	119.2	186.8	305.4	477.4		610	93.8	167.1
15	14.7	26.2	41.1	67.2	105.0		315	67.4	120.1	188.3	307.9	481.3		615	94.2	167.8
20	17.0	30.3	47.5	77.6	121.3		320	68.0	121.1	189.8	310.3	485.1		620	94.6	168.5
25	19.0	33.8	53.1	86.7	135.6		325	68.5	122.0	191.3	312.7	488.9		625	95.0	169.2
30	20.8	37.1	58.1	95.0	148.5		330	69.0	122.9	192.8	315.1	492.6		630	95.4	169.9
35	22.5	40.0	62.8	102.6	160.4		335	69.5	123.9	194.2	317.5	496.3		635	95.7	170.5
40	24.0	42.8	67.1	109.7	171.5		340	70.1	124.8	195.7	319.9	500.0		640	96.1	171.2
45	25.5	45.4	71.2	116.4	181.9		345	70.6	125.7	197.1	322.2	503.7		645	96.5	171.9
50	26.9	47.9	75.0	122.7	191.7		350	71.1	126.6	198.5	324.5	507.3		650	96.9	172.5
55	28.2	50.2	78.7	128.6	201.1		355	71.6	127.5	199.9	326.8	510.9		655	97.2	173.2
60	29.4	52.4	82.2	134.4	210.0		360	72.1	128.4	201.3	329.1	514.5		660	97.6	173.9
65	30.6	54.6	85.6	139.9	218.6		365	72.6	129.3	202.7	331.4	518.1		665	98.0	174.5
70	31.8	56.6	88.8	145.1	226.9		370	73.1	130.2	204.1	333.7	521.6		670	98.3	175.2
75	32.9	58.6	91.9	150.2	234.8		375	73.6	131.0	205.5	335.9	525.1		675	98.7	175.8
80	34.0	60.5	94.9	155.2	242.5		380	74.1	131.9	206.9	338.1	528.6		680	99.1	176.5
85	35.0	62.4	97.8	159.9	250.0		385	74.5	132.8	208.2	340.4	532.1		685	99.4	177.1
90	36.0	64.2	100.7	164.6	257.3		390	75.0	133.6	209.6	342.6	535.5		690	99.8	177.8
95	37.0	66.0	103.4	169.1	264.3		395	75.5	134.5	210.9	344.8	538.9		695	100.2	178.4
100	38.0	67.7	106.1	173.5	271.2		400	76.0	135.3	212.2	346.9	542.3		700	100.5	179.0
105	38.9	69.3	108.7	177.8	277.9		405	76.5	136.2	213.6	349.1	545.7		705	100.9	179.7
110	39.8	71.0	111.3	181.9	284.4		410	76.9	137.0	214.9	351.2	549.1		710	101.2	180.3
115	40.7	72.6	113.8	186.0	290.8		415	77.4	137.9	216.2	353.4	552.4		715	101.6	181.0
120	41.6	74.1 75.7	116.2	190.0	297.1		420	77.9	138.7	217.5	355.5	555.7		720	101.9	181.6
125	42.5		118.6 121.0	193.9	303.2		425	78.3	139.5	218.8	357.6	559.0		725	102.3	182.2
130 135	43.3 44.1	77.2 78.6	121.0	197.8 201.6	309.2 315.1		430 435	78.8 79.2	140.3 141.1	220.0 221.3	359.7 361.8	562.3 565.6		730 735	102.7 103.0	182.8 183.5
135	44.1 45.0	80.1	125.5	201.0	320.9		435	79.2	141.1	221.3	363.9	568.8		735	103.0	184.1
140	45.8	81.5	127.8	203.2	326.5		445	80.1	142.0	222.0	365.9	572.0		745	103.4	184.7
150	46.5	82.9	130.0	212.5	332.1		450	80.6	143.6	225.1	368.0	575.2		750	103.7	185.3
155	47.3	84.3	132.1	212.0	337.6		455	81.0	144.4	226.3	370.0	578.4		755	104.4	185.9
160	48.1	85.6	134.2	219.4	343.0		460	81.5	145.1	227.6	372.0	581.6		760	104.7	186.6
165	48.8	86.9	136.3	222.8	348.3		465	81.9	145.9	228.8	374.1	584.7		765	105.1	187.2
170	49.5	88.2	138.4	226.2	353.6		470	82.4	146.7	230.1	376.1	587.9		770	105.4	187.8
175	50.3	89.5	140.4	229.5	358.7		475	82.8	147.5	231.3	378.1	591.0		775	105.8	188.4
180	51.0	90.8	142.4	232.7	363.8		480	83.2	148.3	232.5	380.0	594.1		780	106.1	189.0
185	51.7	92.0	144.3	235.9	368.8		485	83.7	149.0	233.7	382.0	597.2		785	106.5	189.6
190	52.4	93.3	146.3	239.1	373.8		490	84.1	149.8	234.9	384.0	600.3		790	106.8	190.2
195	53.1	94.5	148.2	242.2	378.7		495	84.5	150.6	236.1	385.9	603.3		795	107.1	190.8
200	53.7	95.7	150.1	245.3	383.5		500	85.0	151.3	237.3	387.9	606.4		800	107.5	191.4
205	54.4	96.9	151.9	248.4	388.3		505	85.4	152.1	238.5	389.8	-		805	107.8	192.0
210	55.1	98.1	153.8	251.4	393.0		510	85.8	152.8	239.6	391.7	-		810	108.1	192.6
215	55.7	99.2	155.6	254.4	397.6		515	86.2	153.6	240.8	393.7	-		815	108.5	193.2
220	56.4	100.4	157.4	257.3	402.2		520	86.6	154.3	242.0	395.6			820	108.8	193.8
225	57.0	101.5	159.2	260.2	406.8		525	87.1	155.1	243.1	397.5	-		825	109.1	194.4
230	57.6	102.6	160.9	263.1	411.3		530	87.5	155.8	244.3	399.4	-		830	109.5	195.0
235	58.2	103.7	162.7	265.9	415.7		535	87.9	156.5	245.4	401.2	-		835	109.8	195.5
240	58.9	104.8	164.4	268.7	420.1		540	88.3	157.3	246.6	403.1	-		840	110.1	196.1
245	59.5	105.9	166.1	271.5	424.4		545	88.7	158.0	247.7	405.0	-		845	110.4	196.7
250	60.1	107.0	167.8	274.3	428.8		550	89.1	158.7	248.9	406.8	-		850	110.8	197.3
255	60.7	108.1	169.5	277.0	433.0		555	89.5	159.4	250.0	408.7	-		855	111.1	197.9
260	61.3	109.1 110.2	171.1 172.7	279.7 202 /	437.2		560	89.9	160.1	251.1	410.5	-		860	111.4	198.5
265 270	61.8 62.4	110.2	172.7 174.4	282.4 285.0	441.4 445.6		565 570	90.3 90.7	160.9 161.6	252.2 253.3	412.3 414.1	-		865 870	111.7 112.1	199.0 199.6
270 275	62.4 63.0	111.2	174.4 176.0	285.0 287.7	445.6 449.7		570	90.7 91.1	161.6	253.3 254.5	414.1 416.0	-		870 875	112.1	200.2
275 280	63.0 63.6	112.2	176.0	287.7	449.7 453.8		575	91.1	162.3	254.5 255.6	410.0 417.8			875 880	112.4	200.2
280	64.1	113.2	177.0	290.3	455.8		585	91.5 91.9	163.7	255.0	417.0	-		885	112.7	200.7
200	64.1	114.2	1/9.1	292.0 295.4	457.8		585	86.6	154.2	230.7 241.8	419.0 395.3	-		890	113.0	201.3
290	65.3	116.2	182.3	295.4	465.8		595	86.9	154.2	241.0	396.9	-		895	113.7	201.3
300	65.8	117.2	183.8	300.5	469.7		600	87.3	155.5	242.0	398.6	-		900	114.0	202.3
1.0	0.10	0.20	0.30	0.50	0.80	1	1.0	0.10	0.20	0.28	0.48	0.74	1	1.0	0.10	0.20
		0.20			2.00	L			0.20				J			1 0.20

**For other temperatures, please use temperature correction factor.

WATER CAPACITY CHART - MODEL 800 - CONT'D. **NON CODE** 90% rated at 25% Overpressure NM³/HR at 15.6°C** Flow Coefficient = .9 x .836 = .752

NM³/HR

FIGURE 800 SERIES WATER CAPACITY

Set	Orifice Area cm ²						
Pressure	D	E	F	G	Н		
Barg	.766	1.365	2.141	3.499	5.47		
0.4	2.3	4.1	6.4	10.5	16.3		
0.6	2.6	4.7 5.2	7.4	12.1	18.8		
0.8 1	2.9 3.3	5.3 5.9	8.2 9.2	13.5 15	21 23.5		
1.2	3.6	6.4	9.2	16.4	25.5		
1.4	3.9	6.9	10.1	17.7	27.7		
1.4	4.2	7.4	11.6	19	29.7		
1.8	4.4	7.9	12.3	20.1	31.5		
2	4.6	8.3	13	21.2	33.2		
2.2	4.9	8.7	13.6	22.2	34.8		
2.4	5.1	9.1	14.2	23.2	36.3		
2.6	5.3	9.4	14.8	24.2	37.8		
2.8	5.5	9.8	15.4	25.1	39.2		
3	5.7	10.1	15.9	26	40.6		
3.2	5.9	10.5	16.4	26.8	41.9		
3.4	6.1	10.8	16.9	27.7 20 E	43.2		
3.6 3.8	6.2 6.4	11.1 11.4	17.4 17.9	28.5 29.2	44.5 45.7		
3.8 4	0.4 6.6	11.4	17.9	29.2 30	45.7 46.9		
4.2	6.7	12	18.8	30.7	48.1		
4.4	6.9	12.3	19.2	31.5	49.2		
4.6	7	12.6	19.7	32.2	50.3		
4.8	7.2	12.8	20.1	32.9	51.4		
5	7.3	13.1	20.5	33.5	52.4		
5.2	7.5	13.3	20.9	34.2	53.5		
5.4	7.6	13.6	21.3	34.9	54.5		
5.6	7.8	13.8	21.7	35.5	55.5		
5.8 6	7.9 8	14.1 14.3	22.1 22.5	36.1 36.7	56.5 57.4		
6.2	8.2	14.5	22.5	37.4	58.4		
6.4	8.3	14.8	23.2	37.9	59.3		
6.6	8.4	15	23.6	38.5	60.2		
6.8	8.6	15.3	23.9	39.1	61.2		
7	8.7	15.5	24.3	39.7	62		
7.2	8.8	15.7	24.6	40.3	62.9		
7.4	8.9	15.9	25	40.8	63.8		
7.6	9.1	16.1	25.3	41.4	64.6		
7.8 8	9.2 9.3	16.3 16.6	25.6 26	41.9 42.4	65.5 66.3		
° 8.2	9.3 9.4	16.8	26.3	42.4	67.2		
8.4	9.5	10.0	26.6	43.5	68		
8.6	9.6	17.2	26.9	44	68.8		
8.8	9.7	17.4	27.2	44.5	69.6		
9	9.9	17.6	27.5	45	70.4		
9.2	10	17.8	27.8	45.5	71.1		
9.4	10.1	17.9	28.1	46	71.9		
9.6	10.2	18.1 10.2	28.4	46.5	72.7		
9.8 10	10.3 10.4	18.3 18.5	28.7 29	47 47.4	73.4 74.2		
10.2	10.4	18.7	29	47.4	74.2		
10.2	10.6	18.9	29.6	48.4	75.6		
10.6	10.7	19.1	29.9	48.8	76.3		
10.8	10.8	19.2	30.2	49.3	77.1		
11	10.9	19.4	30.4	49.8	77.8		
11.2	11	19.6	30.7	50.2	78.5		
11.4	11.1	19.8	31	50.6	79.2		
11.6 11.8	11.2 11.2	19.9 20.1	31.3 31.5	51.1 51.5	79.9 80.6		
11.8 12	11.3 11 /	20.1 20.3	31.5 21.8	51.5 52	80.6 81.2		
12	11.4 11.5	20.3 20.4	31.8 32.1	52 52.4	81.2 81.9		
.1	0.02	0.05	0.07	0.11	0.18		

N	M³/HR				
Set			ifice Area o		
Pressure	D	E	F	G	Н
Barg	.766	1.365	2.141	3.499	5.47
12.4	11.6	20.6	32.3	52.8	82.6
12.6	11.7	20.8	32.6	53.2	83.2
12.8	11.8	20.9	32.8	53.7	83.9
13	11.8	21.1	33.1	54.1	84.6
13.5	12.1	21.5	33.7	55.1	86.2
14	12.3	21.9	34.3	56.1	87.7
14.5	12.5	22.3	34.9	57.1	89.3
15	12.7	22.7	35.5	58.1	90.8
15.5	12.9	23	36.1	59.1	92.3
16	13.1	23.4	36.7	60	93.8
16.5	13.3	23.8	37.3	60.9	95.3
17	13.5	24.1	37.8	61.9	96.7
17.5	13.7	24.5	38.4	62.8	98.1
18	13.9	24.8	38.9	63.6	99.5
18.5	14.1	25.2	39.5	64.5	100.9
19	14.3	25.5	40	65.4	102.2
19.5	14.5	25.8	40.5	66.2	103.6
20	14.7	26.2	41	67.1	104.9
20.5	14.9	26.5	41.5	67.9	106.2
20:0	15.1	26.8	42.1	68.7	107.5
21.5	15.2	27.1	42.5	69.6	108.7
22	15.4	27.4	43	70.4	110
22.5	15.6	27.8	43.5	71.2	111.2
23	15.8	28.1	44	71.9	112.5
23.5	15.9	28.4	44.5	72.7	113.7
23:5	16.1	28.7	45	73.5	114.9
24.5	16.3	29	45.4	74.3	116.1
25	16.4	29.3	45.9	75	117.3
25.5	16.6	29.6	46.3	75.8	118.4
26	16.8	29.8	46.8	76.5	119.6
26.5	16.9	30.1	47.2	77.2	120.7
27	17.1	30.4	47.7	77.9	121.8
27.5	17.2	30.7	48.1	78.7	123
28	17.4	31	48.6	79.4	124.1
28.5	17.5	31.2	49	80.1	125.2
29	17.7	31.5	49.4	80.8	126.3
29.5	17.8	31.8	49.8	81.5	120.3
30	18	32.1	50.3	82.2	128.4
30.5	18.1	32.3	50.7	82.8	129.5
31	18.3	32.6	51.1	83.5	130.6
31.5	18.4	32.8	51.5	84.2	131.6
32	18.6	33.1	51.9	84.9	132.7
32.5	18.7	33.4	52.3	85.5	133.7
33	18.9	33.6	52.7	86.2	134.7
33.5	19	33.9	53.1	86.8	135.7
34	19.2	34.1	53.5	87.5	136.7
34.5	19.3	34.4	53.9	88.1	137.7
					137.7
35	19.4	34.6	54.3	88.7	-
35.5	19.6	34.9	54.7	89.4	-
36	19.7	35.1	55.1	90	-
36.5	19.9	35.4	55.4	90.6	-
37	20	35.6	55.8	91.2	
37.5	20.1	35.8	56.2	91.9	
					-
38	20.3	36.1	56.6	92.5	-
38.5	20.4	36.3	56.9	93.1	-
39	20.5	36.5	57.3	93.7	-
39.5	20.6	36.8	57.7	94.3	-
40	20.8	37	58	94.9	
40		37.2			-
		/</td <td>58.4</td> <td>95.5</td> <td>-</td>	58.4	95.5	-
40.5	20.9				
	20.9 21 0.02	37.5 0.05	58.8	96.1	- 0.18

Set	Orifice A	rea cm ²
Pressure	D	E
Barg	.766	1.365
41.5	21.2	37.7
42	21.3	37.9
42.5	21.4	38.2
43	21.5	38.4
43.5	21.7	38.6
44	21.8	38.8
44.5	21.9	39
45	22	39.3
45.5	22.2	39.5
46	22.3	39.7
46.5	22.4	39.9
47	22.5	40.1
47.5	22.6	40.3
48	22.8	40.5
48.5	22.9	40.8
49	23	41
49.5	23.1	41.2
50	23.2	41.4
50.5	23.3	41.6
51	23.5	41.8
51.5	23.6	42
52	23.7	42.2
52.5	23.8	42.4
53	23.9	42.6
53.5	24	42.8
54	24.1	43
54.5 55	24.3	43.2 43.4
55.5	24.4 24.5	43.4
55.5 56	24.5 24.6	43.0 43.8
56.5	24.0 24.7	43.8 44
50.5 57	24.7 24.8	44 44.2
57.5	24.0	44.2
57.5	24.9 25	44.4 44.6
58.5	25 25.1	44.0
58.5	25.1	44.0
59.5	25.2	45.1
60	25.5	45.3
60.5	25.6	45.5
61	25.7	45.7
61.5	25.8	45.9
62	25.9	46.1
.1	0.02	0.05

VACUUM CAPACITY CHART – MODEL 800 NON CODE – Plain or Packed Cap

NON CODE – Plain or Packed Cap 90% rated SCFM (NM³/HR) at 60°F (15.6°C)** Flow Coefficient = .9 x .975 = .878

SCFM

Set		Orifice Area in ²								
Pressure	D	E	F	G	Н					
in.HG	0.1188	0.2116	0.3318	0.5424	0.8479					
10	27	48	76	124	194					
11	28	50	78	127	199					
12	28	51	80	130	204					
13	29	52	82	133	208					
14	29	53	83	135	211					
15	30	53	84	137	214					
16	30	54	85	138	216					
17	30	54	85	139	218					
18	30	55	86	140	219					
19	31	55	86	140	220					
20	31	55	86	141	220					
21	31	55	86	141	220					
22	31	55	86	141	220					
23	31	55	86	141	220					
24	31	55	86	141	220					
25	31	55	86	141	220					
26	31	55	86	141	220					
27	31	55	86	141	220					
28	31	55	86	141	220					
29	31	55	86	141	220					
30	31	55	86	141	220					

NM ³ /HR										
Set		Or	ifice Area o	cm ²						
Pressure	D	E	F	G	Н					
mmHG	.766	1.365	2.141	3.499	5.47					
254.0	46	82	129	211	330					
279.4	48	85	133	216	338					
304.8	48	87	136	221	347					
330.2	49	88	139	226	353					
355.6	49	90	141	229	358					
381.0	51	90	143	233	364					
406.4	51	92	144	234	367					
431.8	51	92	144	236	370					
457.2	51	93	146	238	372					
482.6	53	93	146	238	374					
508.0	53	93	146	240	374					
533.4	53	93	146	240	374					
558.8	53	93	146	240	374					
584.2	53	93	146	240	374					
609.6	53	93	146	240	374					
635.0	53	93	146	240	374					
660.4	53	93	146	240	374					
685.8	53	93	146	240	374					
711.2	53	93	146	240	374					
736.6	53	93	146	240	374					
762.0	53	93	146	240	374					

** For other temperatures, please use temperature correction factor.

FIGURE 10 SERIES SAFETY VALVE

APPLICATION DATA

- Industrial Low Pressure Steam Heating Boilers
- Commercial Low Pressure Steam Heating Boilers

VALVE RATINGS

Model	Pressure PSIG (bar)	Temperature °F (°C)
All	5 to 15 (.3 to 1)	-20 to 250 (-29 to 121)

APPLICABLE CODES

- ASME Section IV "HV" for Low Pressure Steam (when set @ 15 PSI)
- Canadian Registration #0G0591.9C

FIGURE 10 SERIES

SIZES 3/4" – 3" PRESSURES to 15 PSIG at 250°F

- Meets ASME Section IV Code for Steam Service
- "HV" National Board Certified
- Low Cost
- High Capacity
- Dependable
- Tight Shutoff
- Sharp Popping and Closing Action
- High Degree of Repeatability
- Unitized Body

MODELS

0010 - Cast Iron Body, Bronze Seats

_	M	odel	_	Orific	e Inlet Size	Connections	; ; •	Set Press	sure	
0	0	1	0	Ζ	Н	Α	- 0	1	5	
1	2	3	4	5	6	7	8	9	10	
	Model - Position 1, 2, 3 & 4 0010 = Cast Iron Body, Bronze Seats Orifice - Position 5				D = E = F = G = H =	tion 6 = ³ / ₄ = 1 = 1 ¹ / ₄ = 1 ¹ / ₂	P A Set	nnection cosition = Mi Press Position	7 PT x F sure - 8, 9 8	<u> </u>

FIGURE 10 SERIES

SPECIFICATION

The valve shall meet the ASME Section IV Code for low pressure steam service. It shall be "HV" National Board Certified. The valve inlet and outlet shall be one integral casting assuring proper alignment of disc, seat and spindle for smooth action. The valve shall maintain a high degree of repeatability. The valve shall be top guided by a disc guide fitted into the body. The valve shall have an open lever assembly. The valve shall have a non-adjustable blowdown.

MATERIALS OF CONSTRUCTION

Ref	Part Name	Material
1	Pull Ring	SST
3	Compression Screw	Stl. plated CI ASTM A108/A126
4	Seal Wire	SST
5	Seal	Lead
6	Lock Screw	Brass ASTM B16
7	Drive Screw	SST
8	Nameplate	SST
9	Wave Washer	Plated Steel
10	Spring	Plated Steel
11	Disc Guide	Brass/Bronze ASTM B135/B505
12	Spindle Pin	Plated Steel
13	Spring Washer	Plated Steel
14	Spindle	Steel ASTM A108
15	Disc	Brass/Bronze ASTM B16/B62
16	Seat	Brass/Bronze ASTM B16/B505
17	Body	Cast Iron ASTM A126
18	Sealant	Sealant

DIMENSIONS inches (mm) AND WEIGHTS pounds (kg)

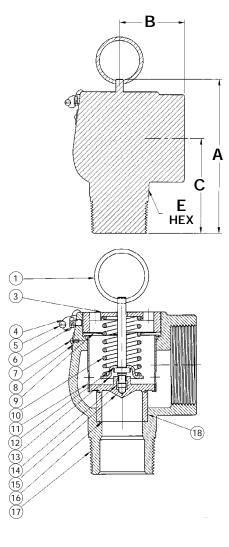
						-		
Model	Inlet	Orifice	Outlet	A*	B	C	E Hex	Weight
0010ZDA	3/4	Z	1	3⁵⁄h₀	1½	2¾6	1¼	1
	(20)		(25)	(76)	(38)	(56)	(32)	(.4)
0010ZEA	1	Z	1¼	4	2	2%	1½	2
	(25)		(32)	(95)	(51)	(67)	(38)	(.9)
0010ZFA	1¼	Z	1½	5	21/8	3	11/8	3
	(32)		(40)	(108)	(54)	(76)	(48)	(1.4)
0010ZGA	1½	Z	2	5½	2 ³ ⁄16	3 ³ ⁄16	2	4
	(40)		(50)	(117)	(56)	(81)	(51)	(1.8)
0010ZHA	2	Z	2½	6 ¹¹ / ₁₆	21/8	4	3	8
	(50)		(65)	(156)	(73)	(102)	(76)	(3.6)
0010ZJA	2½	Z	2½	83/8	3¾	4 ³ / ₈	3¼	14
	(65)		(65)	(194)	(95)	(111)	(83)	(6.3)
0010ZKA	3	Z	3	9½	31/8	51⁄8	4	22
	(80)		(80)	(229)	(98)	(130)	(102)	(10)

* Add 1/4" to "A" dimension to allow for lift.

SATURATED STEAM CAPACITY CHART—MODEL 0010 ASME Section IV "HV" 90% rated at 33.3% Overpressure** LBS/HR (KGS/HR)

LBS/HR

Set		Valve & Orifice Area, in ²									
Pressure	34 Z 1	1 Z 1¼	1¼ Z 1½	1½Z2	2 Z 2½	2½ Z 2½	3 Z 3				
PSIG	0.276	0.49	0.765	1.107	1.961	3.063	4.43				
5*	243	431	673	974	1725	2694	3896				
10*	318	565	883	1277	2263	3534	5112				
15	394	700	1093	1581	2801	4375	6327				


* Pressure settings below 15 PSIG (1.034 barg) are non code.

 ** Pressure settings below 15 PSIG (1 barg) are at 10% overpressure.

KGS/HR

Set	Valve & Orifice Area cm ²										
Pressure	20 Z 25	25 Z 32	32 Z 40	40 Z 50	50 Z 65	65 Z 65	80 Z 80				
Barg	1.78	3.16	4.94	7.14	12.65	19.76	25.58				
0.4*	255	452	706	1022	1811	2828	4091				
0.7*	321	569	889	1286	2279	3559	5148				

Consult Factory for capacities below 5 PSIG

ALVES

FIGURE 15LC SAFETY VALVE

APPLICATION DATA

- Bulk Hauling Railroad and Truck Tank Cars
- High Volume Blowers
- Compressors
- Dryers
- Pneumatic Equipment
- Tanks

VALVE RATINGS

Model	Pressure PSIG (bar)	Temperature °F (°C)
All	5 to 15 (.3 to 1)	-20 to 400 (-29 to 204)

APPLICABLE CODES

Canadian Registration #0G0591.9C — 015C, 015LC
 #0H0591.9C — 015A, 015LA

FIGURE 15 SERIES

SIZES 3/4" – 3" PRESSURES to 15 PSIG at 400°F

- Air & Non-hazardous Service
- Low Cost
- High Capacity
- Cast Iron or Aluminum Body
- Dependable
- Tight Shutoff
- Sharp Popping & Closing Action
- High Degree of Repeatability
- Unitized Body

OPTIONS

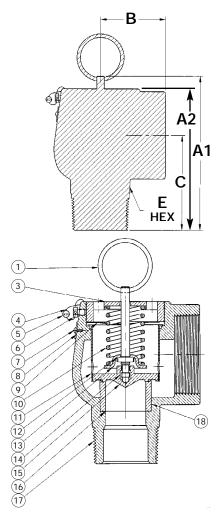
- Stainless Trim
- Set Pressures 15 to 60 psi (Consult Factory)
- Polyurethane Soft Seat Available (Consult Factory)

MODELS

- 015C Cast Iron Body, Bronze Seats, Pull Ring
- 015A Cast Iron Body, Bronze Seats, Sealed Cap
- 15LC Aluminum Body on 015C (2 x 2½ only)
- 15LA Aluminum Body on 015A (2 x 2½ only)

			CO	DE S	SELEC		N CH	HAR	T		
	_	Model Orific				Inlet Size	Connec tions		Set Pres	sure	
	0	1	5	С	Ζ	К	Α	- 0	1	5	
	1	2	3	4	5	6	7	8	9	10	
Model - Position 1, 2, 3 015C = Cast Ir 015A = Cast Ir 15LC = Alumin 15LA = Alumin Orifice -	on Bo on Bo ium E	ody, Brz Body or	z Seats n 015C	, Seale (2 x 21	ed Cap ∕₂ only)	F E F C	et Siz Positio $D = \frac{3}{2}$ = 1 G = 1 H = 2 H = 2	n 6 4 1/4 1/2	Po A Set F Po	Pressu sition 8	T x FPT
Position 5 Z						k	= 2 < = 3		† Spe	nce Cei	rtified Assemblers Only

FIGURE 15 SERIES


FIGURE 15 SERIES

SPECIFICATION

The valve inlet and outlet shall be one integral casting assuring proper alignment of disc, seat and spindle for smooth action. The valve shall maintain a high degree of repeatability. The valve shall be top guided by a disc guide fitted into the body. The valve shall have a non-adjustable blowdown.

MATERIALS OF CONSTRUCTION

Ref	Part Name	Material
1	Pull Ring	SST
3	Compression Screw	Stl. plated CI ASTM A108/A126
4	Seal Wire	SST
5	Seal	Lead
6	Lock Screw	Brass ASTM B16
7	Drive Screw	SST
8	Nameplate	SST
9	Wave Washer	Plated Steel
10	Spring	Plated Steel
11	Disc Guide	Brass/Bronze ASTM B135/B505
12	Spindle Pin	Plated Steel
13	Spring Washer	Plated Steel
14	Spindle	Steel ASTM A108
15	Disc	Brass/Bronze ASTM B16/B62
16	Seat	Brass/Bronze ASTM B16/B505
17	Body	Cast Iron ASTM A126
	Body	Aluminum ASTM B26, A03560, T6
18	Sealant	Sealant
19	Bushing 015A/15LA	Brass ASTM B16

DIMENSIONS inches (mm) **AND WEIGHTS** pounds (kg)

									+
Model	Inlet	Orifice	Outlet	A1	A2	В	C	E Hex	Weight
****ZDA	3/4	Z	1	3 ⁵ / ₁₆	3	1½	2 ³ / ₁₆	1¼	1
	(20)		(25)	(76)	(76)	(38)	(56)	(32)	(.4)
****ZEA	1	Z	1¼	4	3 ¾	2	2%	1½	2
	(25)		(32)	(95)	(95)	(51)	(67)	(38)	(.9)
****ZFA	1¼	Z	1½	5	4¼	2 ¹ /8	3	11/8	3
	(32)		(40)	(108)	(108)	(54)	(76)	(48)	(1.4)
****ZGA	1½	Z	2	5 ¹ /8	4%	2 ³ /16	33/16	2	4
	(40)		(50)	(117)	(117)	(56)	(81)	(51)	(1.8)
****ZHA	2	Z	2½	6 ¹¹ /16	6 ¹ / ₈	21/8	4	3	8
	(50)		(65)	(156)	(156)	(73)	(102)	(76)	(3.6)
****ZJA	2½	Z	2½	8 ³ /8	7%	3¾	4 ³ / ₈	3¼	14
	(65)		(65)	(194)	(194)	(95)	(111)	(83)	(6.3)
****ZKA	3	Z	3	9 ½	9	31/8	5 ¹ / ₈	4	22
	(80)		(80)	(229)	(229)	(98)	(130)	(102)	(10)

**** Use appropriate Model Number.

AIR CAPACITY CHART - MODELS 015C, 015A, 15LC, 15LA **ASME Section VIII "UV" 90% rated at 3 PSI Overpressure SCFM (M³/HR)

SCFM

Set		Valve & Orifice Area, in ²										
Pressure	¾ Z 1	1 Z 1¼	1¼ Z 1½	1½Z2	2 Z 2½	2½ Z 2½	3 Z 3					
PSIG	0.276	0.49	0.765	1.107	1.961	3.063	4.43					
5*	82	145	226	328	579	906	1311					
10*	100	177	276	400	706	1105	1599					
15	118	209	326	472	834	1305	1888					

* Pressure settings below 15 PSIG (1.034 barg) are non code.

**Only 2" size is ASME Certified.

M³/HR

Set		Valve & Orifice Area cm ²										
Pressure	20 Z 25	25 Z 32	32 Z 40	40 Z 50	50 Z 65	65 Z 65	80 Z 80					
Barg	1.78	3.16	4.94	7.14	12.65	19.76	25.58					
0.4*	144	255	398	576	1018	1593	2305					
0.7*	171	302	472	683	1207	1888	2732					
1.0*	197	350	545	790	1395	2183	3159					

Consult factory for capacities below 5 psi or between 15 to 60 psi.

FIGURE 15V SERIES SAFETY VALVE

APPLICATION DATA

- Vacuum Pumps
- Bulk Hauling Railroad & Truck Tank Cars
- Pneumatic Equipment
- Tanks

VALVE RATINGS

Model	Pressure in.HG (mmHG)	Temperature °F (°C)
All	5 to 30 (.2 to 1)	-20 to 400 (-29 to 204)

APPLICABLE CODES

Canadian Registration #0H0591.9C

FIGURE 15V SERIES

SIZES 3/4" – 3" PRESSURES to 30" HG at 400°F

- Vacuum Service
- Low Cost
- High Capacity
- Cast Iron or Aluminum Body
- Dependable
- Tight Shutoff
- Sharp Popping & Closing Action
- High Degree of Repeatability
- Unitized Body

OPTIONS

Stainless Trim

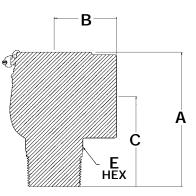
MODELS

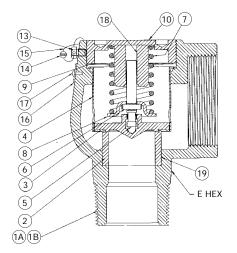
- 015V Cast Iron Body, Bronze Seats, Vacuum Service
- 015LV Aluminum Body on 015V (2" x 21/2" only)

Orifice Inlet Connec- -Set Pressure Model Size tions 5 0 Ζ н 1 5 0 2 Ζ - 0 2 3 5 6 7 8 9 1 4 10 Model -Orifice -Connections -Position 5 Position 7 Position 1, 2, 3 & 4 Ζ Ζ 0050 = Bronze Body, Viton Soft Seat Inlet Size -Set Pressure -0051 = Pull Ring on 0050 0052 = Aluminum Body, Viton Soft Seat Position 6 Position 8, 9 & 10 _ = Actual Setting H = 2 0053 = Pull Ring on 0052

CODE SELECTION CHART

FIGURE 15V SERIES


FIGURE 15V SERIES


SPECIFICATION

The valve inlet and outlet shall be one integral casting assuring proper alignment of disc, seat and spindle for smooth action. The valve shall maintain a high degree of repeatability. The valve shall be top guided by a disc guide fitted into the body. The valve shall have a non-adjustable blowdown.

MATERIALS OF CONSTRUCTION

Ref	Part Name	Material
1A	Body	Cast ASTM A126
1B	Body	Aluminum ASTM B26, A03560, T6
2	Seat	Bronze ASTM B505
3	Disc	Brass/Bronze ASTM B505
4	Disc Guide	Brass ASTM B135
5	Spindle	Steel ASTM A108
6	Spindle Pin	Plated Steel
7	Spring	Plated Steel
8	Spring Washer	Plated Steel
9	Wave Washer	Plated Steel
10	Compression Screw	Cast Iron ASTM A126
13	Lock Screw	Brass ASTM B16
14	Seal	Lead
15	Seal Wire	SST
16	Nameplate	SST
17	Drive Screw	SST
18	Bushing	Brass ASTM B16

DIMENSIONS inches (mm) **AND WEIGHTS** pounds (kg)

Inlet	Orifice	Outlet*	A1	В	С	E Hex	Weight
³ / ₄	Z	1	3	1½	2¾₀	1¼	1
(20)		(25)	(76)	(38)	(56)	(32)	(.4)
1	Z	1¼	3¾	2	2⁵⁄₅	1½	2
(25)		(32)	(95)	(51)	(67)	(38)	(.9)
1¼	Z	1½	4¼	2¹⁄₃	3	11%	3
(32)		(40)	(108)	(54)	(76)	(48)	(1.4)
1½	Z	2	4⁵‰	2¾₀	3¾₀	2	4
(40)		(50)	(117)	(56)	(81)	(51)	(1.8)
2	Z	2½	6¼	2 ⁷ ⁄⊮	4	3	8
(50)		(65)	(156)	(73)	(102)	(76)	(3.6)
2½	Z	2½	7⁵‰	3¾	4¾	3¼	14
(65)		(65)	(194)	(95)	(111)	(83)	(6.3)
3	Z	3	9	31⁄8	5¼	4	22
(80)		(80)	(229)	(98)	(130)	(102)	(10)
	¾ (20) 1 (25) 1¼ (32) 1½ (40) 2 (50) 2½ (65) 3	$\begin{array}{c c} \frac{34}{(20)} & Z \\ \hline 1 & Z \\ \hline (25) & Z \\ \hline 1 \frac{14}{(25)} & Z \\ \hline 1 \frac{14}{(32)} & Z \\ \hline 1 \frac{14}{(40)} & Z \\ \hline 2 & Z \\ \hline (50) & Z \\ \hline 2 \frac{14}{(65)} & Z \\ \hline 3 & Z \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

**** Add appropriate model number

* Valve outlet should be mounted at vacuum side of system.

AIR CAPACITY CHART - MODELS 015V & 015LV Rated Flow SCFM (M³/HR) M³/HR

Set*		Valve & Orifice Area, in2*									
Pressure	¾ Z 1	1 Z 1¼	1¼ Z 1½	1½Z2	2 Z 2½	2½ Z 2½	3 Z 3				
in. HG	0.276	0.49	0.765	1.107	1.961	3.063	4.43				
5	36	85	132	191	337	528	764				
6	39	90	140	203	359	561	812				
7	41	94	147	213	376	588	851				
8	42	98	152	221	389	609	881				
9	43	100	156	227	400	625	904				
10	44	102	159	231	407	637	922				
11	45	104	161	234	412	645	933				
12	45	104	162	236	415	650	940				
12.8-30	45	105	163	236	417	651	943				

*Valve outlet should be mounted at vacuum side of system.

-												
Set		Valve & Orifice Area cm ^{2*}										
Pressure	20 Z 25	25 Z 32	32 Z 40	40 Z 50	50 Z 65	65 Z 65	80 Z 80					
mmHG	1.78	3.16	4.94	7.14	12.65	19.76	25.58					
127	62	144	224	325	573	897	1297					
152	66	153	238	346	610	953	1380					
178	69	160	249	362	639	999	1445					
203	71	166	258	375	661	1034	1497					
229	73	171	265	385	679	1062	1536					
254	75	174	270	392	692	1082	1566					
279	76	176	274	397	701	1096	1586					
305	76	177	276	400	706	1104	1597					
325-762	76	178	276	401	708	1107	1601					

FIGURE 50 SERIES

FIGURE 50 SERIES SAFETY VALVE

APPLICATION DATA

- Bulk Hauling Truck Tank Trailers
- Bulk Hauling Railroad Tank Cars
- Storage Vessels for Powdered Solids (flour, cement, etc.)

VALVE RATINGS

Model	Pressure PSIG (bar)	Temperature °F (°C)
All	10 to 30 (.7 to 2.1)	-20 to 225 (-29 to 107)

APPLICABLE CODES

Canadian Registration #0G0591.9C

FIGURE 50 SERIES

SIZES 2" PRESSURES to 30 PSIG at 225°F

- Air, Gas, Vapors and Powdered Solids
- High Capacity
- Tamper Proof Spring Setting
- Weatherproof
- Spring Chamber Isolated from Process Fluid
- Soft Seat Seal
- Bronze or Aluminum Body

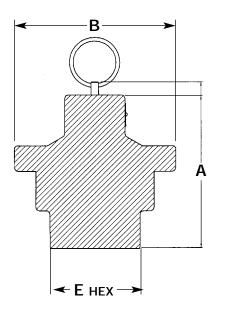
MODELS

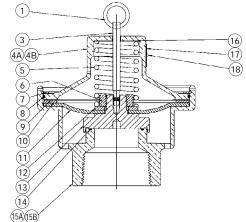
- 0050 Bronze Body, Viton Soft Seat
- 0051 Pull Ring on 0050
- 0052 Aluminum Body, Viton Soft Seat
- 0053 Pull Ring on 0052

	Model			Orifice	Inlet Size	Conne tions	-	Set Press	sure		
	0	0	5	2	Ζ	Н	Ζ	- 0	1	5	
	1	2	3	4	5	6	7	8	9	10	
Model - Position 1, 2, 3 0050 = Bronze 0051 = Pull Rir 0052 = Alumini 0053 = Pull Rir	Body ng on um B	0050 ody, Vi			F Z Inle	fice - Position et Size Position H = 2	; -		Posi Z Set Pr Posi	=	-

CODE SELECTION CHART

[†]Spence Certified Assemblers Only


FIGURE 50 SERIES


SPECIFICATION

The valve shall meet the ASME Section VIII Code for air services. It shall be "UV" National Board Certified. The valve setting shall be tamper resistant. The valve shall be weatherproof and the diaphragm shall completely seal the spring chamber from the process fluid. The valve shall have an O-ring seat seal for tight shutoff.

MATERIALS OF CONSTRUCTION

Ref	Part Name	Material
1	Pull Ring	SST
3	Spindle (0051/0053)	Steel ASTM A108. 12L14
4A	Cover	Bronze ASTM B62
4B	Cover	Aluminum ASTM B 26, A03560, T6
5	Spring	Steel ASTM A228, Plated
6	Disc Nut	Steel, Plated
7	Retaining Ring	Steel, Plated
8	Weather Seal	Viton
9	Wave Spring	Steel, Plated
10	Washer	Steel, Plated
11	Diaphragm	Nylon Reinforced
12	Disc Washer	Plated Steel
13	Disc	ASTM B16, C36000, H02
14	Seat Seal	Viton
15A	Body	Bronze ASME SB62
15B	Body	Aluminum ASTM B26, A03560, T6
16	Fender Washer	Steel, Plated
17	Nameplate	SST
18	Drive Screw	SST

Lead seal plus SS wire not shown

DIMENSIONS* inches (mm) **AND WEIGHTS** pounds (kg)

Model	Inlet	Orifice	Outlet	А	В	E	Weight
0050ZHZ	2	Z	Atmosphere	5¾2	5%	3	7
	(50)			(129)	(136)	(76)	(3.2)
0051ZHZ	2	Z	Atmosphere	6	5%	3	7
	(50)			(152)	(136)	(76)	(3.2)
0052ZHZ	2	Z	Atmosphere	5¾2	5%	3	3
	(50)			(129)	(136)	(76)	(1.4)
0053ZHZ	2	Z	Atmosphere	6	5%	3	3
	(50)			(152)	(136)	(76)	(1.4)

AIR CAPACITY CHART – MODELS 0050, 0051, 0052, 0053 ASME Section VIII "UV" 90% rated at 10% Slope SCFM (NM³/HR)

S	et	Orifice Area, in ²
Pres PS		2.011
1()*	637
1	5	752
2	0	867
2	5	982
3	0	1097
1.	0	25.3

NM³/HR

Set	Orifice Area cm ²
Pressure Barg	12.97
0.6*	1082
0.8*	1278
1.0*	1473
1.2	1669
0.1	43.0

* Pressure settings below 15 PSIG (1.034 barg) are non code.

FIGURE 50 SERIES

APPLICATION DATA

- Steam Boilers
- Steam Pressure Reducing Stations
- Steam Pressure Vessels & Lines

VALVE RATINGS

Model	Pressure PSIG (bar)	Temperature °F (°C)
All	250 (17.2)	406 (208)

DRIP PAN ELBOW

SIZES 3/4" – 8" PRESSURES to 250 PSIG at 406°F

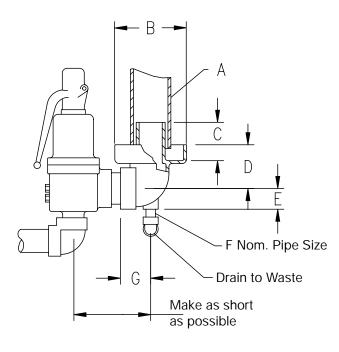
- Collects Discharge Condensate from Steam Systems
- Returns Condensate to Safe Areas
- Increases Life of Safety Valves
- Reduces Discharge Piping Strain
- Female NPT or Flange Connections
- Compatible with All Spence ASME Safety Valves
- Helps Prevent Injury & Property Damage

MODELS

• DPE - Drip Pan Elbow, Cast Iron

CODE SELECTION CHART

	/		_		Size	
	D	Ρ	Ε	-	Η	
	1	2	3		4	
Model -						Size -
Position 1,	2&3					Position 4
DPE = Drip	o Pan	Elbow,	Cast	Iror	1	$D = \frac{3}{4}$
						E = 1
						$F = 1^{1}/_{4}$
						G = 1½
						H = 2
						$J = 2\frac{1}{2}$
						K = 3
						M = 4
						P = 6
						-


DRIP PAN ELBOW

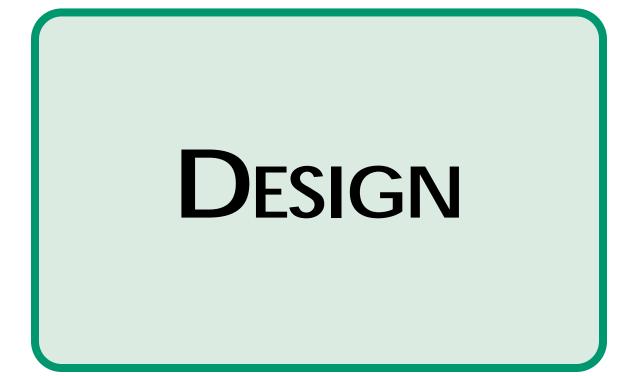
SPECIFICATION

The Drip Pan Elbow shall be a minimum of the size of the safety valve discharge and installed on the discharge side of the safety valve. It shall be made of cast iron and conform to the Power Piping Code. It shall have a pan to collect condensate in the steam riser pipe and a drain to pipe away the condensate.

MATERIALS OF CONSTRUCTION

BodyCast Iron ASTM A126 Class B

VALVES


DIMENSIONS* inches (mm) **AND WEIGHTS** pounds (kg)

Model	Outlet	A	В	С	D	E	F	G	Weight
DPE-D	3/4	2 (51)	3¾ (95)	2¾ (70)	2 (51)	1 (25)	¾ (10)	1½ (38)	2 (.9)
DPE-E	1	2 (51)	3¾ (95)	2¾ (70)	2 (51)	1 (25)	¾ (10)	1½ (38)	2 (.9)
DPE-F	1¼	2.5 (65)	5½ (140)	4¹%₀ (125)	4¼ (105)	1% (37)	¾ (10)	2¼ (54)	4 (1.8)
DPE-G	1½	2.5 (65)	5½ (140)	4¹%₀ (125)	4¼ (105)	1% (37)	¾ (10)	2¼ (54)	4 (1.8)
DPE-H	2	3 (76)	6¼ (159)	4% (117)	3% (92)	1% (41)	½ (13)	2¼ (57)	6 (2.7)
DPE-J	2½	4 (102)	7% (187)	5% (141)	4%₀ (110)	1¹⁵⁄₁₀ (49)	¾ (19)	2¹¼₀ (68)	11 (5.0)
DPE-K	3	4 (102)	8 (203)	6½ (165)	4 ⁷ ⁄₀ (124)	2%₀ (59)	³₄ (19)	3¼ (79)	14 (6.4)
DPE-M	4	6 (152)	9% (244)	8¼ (210)	5¾ (146)	2% (73)	¾ (19)	3¾ (95)	26 (11.8)
DPE-P*	6	8 (203)	12¾ (324)	11% (294)	7%₀ (192)	4¾₀ (106)	¾ (19)	8 (203)	74 (33.6)
DPE-Q*	8	10 (254)	16½ (419)	14¾ (378)	9% (243)	5¾ (146)	1 (25)	10¾ (273)	100 (45.4)

*6" and 8" Drip Pan Elbows have integral 125# flange.

SPENCE

BASICS OF RELIEF VALVES

Types of Relieving Devices

Pressure Relief Valve - A pressure relief device designed to re-close and prevent the further flow of fluid after normal conditions have been restored.

- Safety Valve An automatic pressure relieving device actuated by the static pressure upstream of the valve, and characterized by rapid full opening or pop action. It is used for steam, gas or vapor service
- Relief Valve An automatic pressure relieving device actuated by the static pressure upstream of the valve, opening in direct proportion to the pressure increase. It is used primarily for liquid service.
- Safety Relief Valve An automatic pressure relieving device suitable for use as either a safety or relief valve, depending on application.
- Conventional Safety Relief Valve A safety relief valve having its spring housing vented to the discharge side and which is directly affected by fluctuations in backpressure.
- Balanced-Bellows Safety Relief Valve A safety relief valve incorporation in its design a means of compensation for fluctuations due to backpressure.
- Pilot Operated Pressure Relief Valve A pressure relief valve in which the major relieving valve is combined with and is controlled by a self-actuated auxiliary pressure relief valve.

Temperature Relief Valve (P&T) - A pressure relief valve which may be actuated by external or internal temperature or by pressure o the inlet side.

Rupture Disc - A nonre-closing pressure relief device actuated by inlet static pressure and designed to function by the bursting of a pressure containing disc.

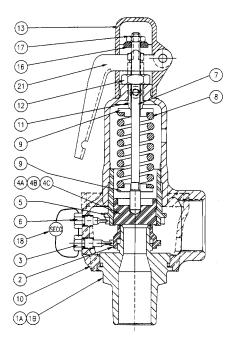
Breaking Pin Device - A nonre-closing pressure relief device actuated by inlet static pressure and designed to function by the breakage of a load-carrying section of a pin which supports a pressure containing member.

Parts

Nozzle - The pressure containing element which constitutes the inlet flow passage and includes the fixed portion of the seat closure. The nozzle can be of two designs: Full-nozzle or Semi-nozzle.

- Full Nozzle a single member extending from the face of the inlet flange to the valve seat.
- Semi-Nozzle the lower part of the inlet throat is formed by the body casting and the upper part is valve seat threaded or welded into the valve body

Disc - The pressure containing movable element of a pressure relief valve which effects closure.


Trim - Internal parts. Specifically the seat (nozzle) & disc.

Orifice - A computed area of flow for use in flow formulas to determine the capacity of a pressure relief valve.

Huddling Chamber - The annular pressure chamber located beyond the valve seat for the purpose of generating a popping characteristic.

Lifting Device (Lever) - A device to manually open a pressure relief valve by the application of external force to lessen the spring loading which holds the valve closed. Lifting devices can be an open lever or a packed lever (fully enclosed design).

Balanced Bellows - A bellows designed so that the effective area of the bellow is equivalent to that of the valve seat, thereby canceling out the additive effect of the backpressure. Balanced bellows are used for the following reasons: Backpressure is excessive or variable, fluid is highly viscous or slurry, or the fluid is corrosive to the upper works of the valve.

BASICS OF RELIEF VALVES, CONT'D.

Operational Characteristics

Rated Capacity - The measured flow at an authorized percent overpressure permitted by the applicable code. Rated capacity is generally expressed in lbs/hr for Steam, SCFM for gases and GPM for liquids.

Operating Pressure - The pressure to which the vessel is usually subjected in normal service.

Set Pressure - The inlet pressure at which the valve is adjusted to open under service conditions. On a relief valve (liquid service), this is considered the point at which the first continuous stream of water starts to discharge and runs vertically down from the outlet of the valve. On a safety valve (Steam, air or gas) it is the inlet pressure at which the valve "pops" (not the point of first audible simmer or warning).

Cold Differential Test Pressure (CDTP) - The inlet static pressure at which a pressure relief valve is adjusted to open on the test stand. This test pressure includes corrections for service conditions of backpressure and/or temperature.

Simmer (Warn/Pre-Open) - The audible or visible escape of fluid between the seat and disc at an inlet static pressure below set pressure and at no measurable capacity. All pressure relief valves will have some simmer. Typically a metal seated valve will simmer at 90% of the set pressure and a soft seated valve will simmer at 95% of the set pressure.

Coefficient of Discharge - The ratio of the measured relieving capacity to the theoretical relieving capacity.

Maximum Allowable Working Pressure (MAWP) - The maximum gauge pressure permissible in a vessel at a designated temperature.

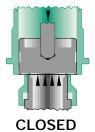
Overpressure - The pressure increase over the set pressure of a pressure relief valve, usually expressed as a percentage of the set pressure.

Accumulation - The pressure increase over the maximum allowable working pressure (MAWP) of the vessel during discharge through the pressure relief valve usually expressed as a percentage of the set pressure.

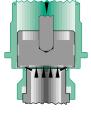
Blowdown - The difference between the actual set pressure of a pressure relief valve and the actual reseating pressure, expressed as a percentage of the set pressure or in pressure units.

Leak Test Pressure - The specified inlet static pressure at which a standard quantitative seat leakage test is performed.

Backpressure - Pressure from the discharge side of a pressure relief valve. There are two types of backpressure: Constant Backpressure and Variable Backpressure.

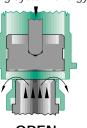

- Constant Backpressure Backpressure which does not change appreciably under any condition of operation, whether or not the pressure relief valve is open or closed. A conventional relief valve may be used, provided the spring setting is reduced by the amount of the constant backpressure.
- Variable Backpressure Pressure from the outlet side of the relief valve as a result of the Superimposed Variable Backpressure or Built-up Backpressure.
- Superimposed Variable Backpressure A variable backpressure that is present before the pressure relief valve starts to open. It is usually the result of one or more valves discharging into a common header, causing a varying degree of backpressure on each valve connected to the system. It will cause the spring set pressure to be increased an amount equal to the backpressure. It can be negated by the use of a bellows-style relief valve.
- Built-up Backpressure Pressure which develops at the valve outlet as a result of flow after the pressure relief valve has opened.

Lift - The actual travel of the disc away from the closed position when a valve is relieving.


Chatter - Abnormal, rapid reciprocation movement of the disc on the seat of a pressure relief valve.

DUAL RING CONTROL

Safety Valves are pressure relief devices actuated by inlet static pressure and characterized by rapid opening or "pop" action. The difference between Safety Valves from different manufacturers is how well they do this. Spence Figure 31 Safety Valves' Dual Ring Control allows for finer adjustment of the "popping" action and length of "blowdown". This allows exceptional flow efficiency and maximum lifting force while minimizing system energy loss.



System pressure is pushing upward against the disk which is held closed by the downward force of the spring against the spindle.

OPENING

When system pressure rises above the set pressure of the spring, the disc begins to lift. This simmer/warn stage allows system pressure to enter the "huddling chamber" where it acts on a larger, secondary area of the disc. This magnified force causes the valve to "pop" open.

OPEN

As pressure increases, the disc continues to lift until fully open. When pressure is reduced to a level below the set point of the valve, the spring force against the spindle will snap shut the disc. BASICS OF RELIEF VALVES

SIZING GUIDELINES

GENERAL

- 1. Recommend a 20% or 10 PSIG differential between operating and set pressure, whichever is greater. The set pressure of each pressure relief valve must be in conformance with limits specified in the appropriate ASME code.
- 2. Relieving Capacity
 - a. ASME Section I The minimum required relieving capacity of the pressure relief valve for all types of boilers shall not be less than the maximum designed steaming capacity as determined by the Manufacturer and shall be based on the capacity of all the fuel burning equipment as limited by other boiler functions. (ASME Section I, PG-67.2.1, 1998)
 - b. ASME Section VIII The minimum required relieving capacity shall be sufficient to carry off the maximum quantity that can be generated or supplied to the attached equipment without permitting a rise in pressure within the vessel with appropriate overpressure condition above the maximum allowable working pressure.
- 3. Pressure relief valves should not be oversized. Oversizing a pressure relief valve will cause chatter. A multiple valve selection should be used in order to eliminate the possibility of chattering. Use a multiple valve installation when:
 - a. The maximum specified capacity requires selection of a pressure relief valve greater than 6 inch pipe size.
 - b. When it is more economical to install two smaller valves than one very large one.
 - c. If the normal operating capacity of the system is less than approximately 50% of the valve capacity. In this case the volume is not sufficient to keep the valve in its open position and the spring will push the valve closed causing chattering. The first pressure relief valve should be sized on the normal operating capacity and the remaining should be sized on the additional capacity that can be required during the maximum possible capacity of the system.

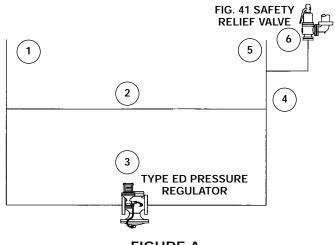
SINGLE VALVE INSTALLATION

- Set pressure of the pressure relief valve shall be set at or below the Maximum Allowable Working Pressure (MAWP) of the weakest item in the system. This includes but is not limited to Steam Boilers, Pressure Vessels and Equipment and Piping Systems.
- 2. Overpressure
 - a. ASME Section I The pressure cannot rise more than 6% above the maximum allowable working pressure (ASME Section I, PG-67.2, 1998)
 - b. ASME Section VIII The pressure cannot rise more than 10% or 3 psi, whichever is greater, above the MAWP. (ASME Section VIII, UG-125 (c), 1998).

MULTIPLE VALVE INSTALLATION

- 1. Overpressure
 - a. ASME Section I The pressure cannot rise more than 6% above the maximum allowable working pressure (ASME Section I, PG-67.2, 1998)
 - b. ASME Section VIII The pressure cannot rise more than 16% or 4 psi, whichever is greater, above the maximum allowable working pressure (ASME Section VIII, UG-125 (c)(1), 1998).
- SPENCE

- 2. Set Pressure
 - a. ASME Section I One or more safety valves shall be set at or below the maximum allowable working pressure. If additional valves are used the highest pressure setting shall not exceed the MAWP by more than 3%. The complete range of pressure settings of all the saturated steam safety valves shall not exceed 10% of the highest set pressure to which any valve is set. (ASME Section I, PG-67.3, 1998)
 - b. Section VIII One valve need to be set at or below the MAWP and the other valves can be set at a higher pressure not to exceed 105% of the MAWP of the weakest item in the system. (ASME Section VIII, UG-134, 1998)


PRESSURE RELIEF VALVES IN PRESSURE REDUCING STATIONS

There has been much debate in regards to the sizing of Pressure Relief Valves in Pressure Reducing Stations. The sizing guidelines presented below are the recommendations of Spence Engineering. These recommendations are conservative and based on the worst case scenarios. The guidelines are in agreement with the ASME Section VIII code, the National Board Inspection Code and the Power Piping Code ASME B31.1. It is important to understand that each local jurisdiction may have its own set of approved practices and those practices should be followed.

All sizing is based on maximum capacity from the source and piping is in accordance with handling the maximum pressure from the source. Determination of capacity through a given pipe size is complicated. Spence recommends the computation of such values should be through published fluid dynamics reference materials. If the capacity through the pipe is unknown, Spence suggests that when sizing for the limiting value, use the maximum capacity of the first pressure reducing valve and by-pass in the system or maximum capacity from the source, whichever is less.

A. Single Stage Reducing Stations

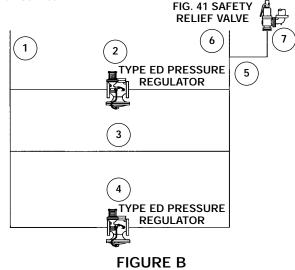
1. Where pressure reducing valves are used, one or more pressure relief valves shall be provided on the low pressure side of the system. Otherwise, the piping and equipment on the low pressure side of the system shall be designed to withstand the upstream design pressure. The relieving capacity provided shall be such that the design pressure of the low pressure system will not be exceeded if the reducing valve fails open (a) (ASME B31.1 section 122.5.1, 1995)

FIGURE A

SIZING GUIDELINES

SIZING GUIDELINES - CONT'D

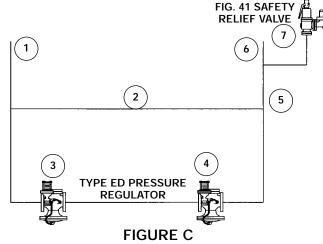
- 2. Size SRV for pressure drop across regulator using regulator high side pressure and the safety relief valve set pressure.
- 3. Hand controlled bypass valves having a capacity no greater than the reducing valve may be installed around pressure reducing valves if the downstream piping is protected by relief valves as required in section ASME B31.1 Section 122.5.1 or if the design pressure of the downstream piping system and equipment is at least as high as the upstream pressure (ASME B31.1 section 122.5.2, 1995)
- 4. When a pressure reducing valve is installed, there are two possibilities of introducing boiler pressure into the low pressure system. It is necessary to determine the flow under both circumstances and check that the size of the pressure relief valve under either condition will be adequate. The two possibilities are:
 - a) the failure of the pressure reducing valve so that it remains at 100% full travel $\ensuremath{\mathfrak{I}}$
 - b) the possibility of the by-pass valve being wide open (2)
 - (National Board Inspection Code ANSI/NB-23, Appendix G, 1999)

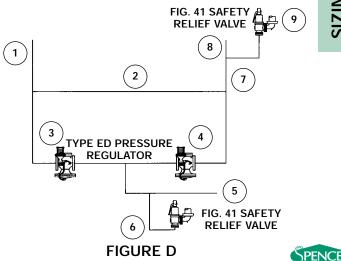

When taking into consideration the worst possible scenario, Spence Engineering recommends that the pressure relief valve be sized for the maximum flow through both the pressure reducing valve ③ and the by-pass ② or the maximum possible flow through the downstream piping ④ whichever is less. Consideration should be given to the maximum capacity of the source ①.

For unknown regulator and/or bypass valve capacities, see Section E for approximate sizing formulas

- 5. When calculating the maximum possible flow through the regulator, in all cases your sizing should be based on the largest orifice size available in the pipe size of the regulator ③. It may be possible that an originally supplied reduced orifice can be changed in the field to a full port orifice without any consideration to the effect on the capacity of the Pressure Relief Valve.
- 6. In determining the maximum flow through the pressure reducing valve when the valve fails, the failure mode should be considered when the valve plug has reached 100% full travel ③.

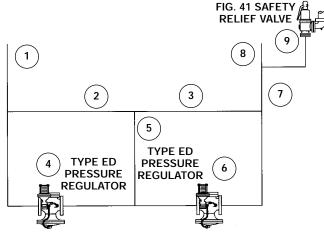
B. Parallel Pressure Reducing Stations


1. When sizing a pressure relief valve in a parallel pressure reducing station, the conditions listed above in (A) should all be met.


- 2. In the case of failure of the pressure reducing valve, the capacity shall be sized on the basis of the possibility that both valves 2 & ④ would fail open at the same time plus the by-pass ③ or the maximum possible flow through the downstream piping, whichever is less ⑤. Consideration should be given to the maximum capacity of the source ①.
- 3. Size SRV for pressure drop across regulator using regulator high side pressure and the safety relief valve set pressure.

C. Two Stage Pressure Reducing Stations

- 1. When sizing a pressure relief valve in a two stage pressure reducing station, the conditions listed above in (A) should all be met.
- 2. In the case of failure of the pressure reducing valve, the capacity shall be sized on the basis of the high side pressure regulator (National Board Inspection Code ANSI/NB-23, Appendix G, 1999) having the largest possible orifice size plus the bypass ⁽²⁾ or the maximum possible flow through the downstream piping, whichever is less. Consideration should be given to the maximum capacity of the source ⁽¹⁾.



3. If an intermediate pressure line is taken off between the pressure reducing valves then this line and the final low side shall be protected by pressure relief valves sized on the basis of the high side pressure and the largest possible orifice size of the first pressure reducing valve ③ in the line (National Board Inspection Code ANSI/NB-23, Appendix G, 1999) plus the bypass ② or the maximum possible flow through the downstream pipe ⑦, whichever is less. Consideration should be given to the maximum capacity of the source ①.

SIZING GUIDELINES - CONT'D

- 4. If an intermediate by-pass line is designed in between the pressure reducing valves then the final low side shall be protected by a pressure relief valve sized on the basis of the high side pressure and the largest possible orifice size of the first of the two pressure reducing valves plus the bypass valves @, ③ and ⑤ or the maximum possible flow through the downstream piping ⑦, whichever is less. Consideration should be given to the maximum capacity of the source ①.
- 5. Size SRV for pressure drop across regulator using regulator high side pressure and the safety relief valve set pressure.

FIGURE E

D. Two Stage Parallel Pressure Reducing Station

- 1. Sizing is based whenever any condition from (B) and any condition from (C) applies.
- 2. In addition, all sizing should be based on maximum capacity from sources.

E. When Flow Coefficients Are Not Known

- For sizing Spence regulators and/or control valves: See Main Valve Sizing Formulas on page 68 See CV Data beginning on page 69
- For all other manufacturer's valves where flow coefficients are not known, the following may be approximated.
- It is possible that the flow coefficients K and K_1 may not be known and in such instances for approximating the flow, a factor of 1/3 may be substituted for K and 1/2 for K_1 .

The formulas in E above then become:

- W = 1/3AC for the capacity through the pressure reducing valve and
- $W = 1/2A_1$ for the capacity through the by-pass valve WHERE:
- W = steam flow, in lbs/hr through the pressure reducing valve
- A = internal area in sq. in. of the inlet pipe size of the pressure reducing valve (See Pipe Data Table)
- A₁ = internal area in sq. in. of the pipe size of the bypass around the pressure reducing valve (See Pipe Data Table)
- **C** = flow of saturated steam through a 1 sq. in. pipe at various pressure differentials (See Steam Capacity Table)
- C₁ = flow of saturated steam through a 1 sp. In. pipe at various pressure differentials (See Steam Capacity Table)

Caution should be exercised when substituting these factors for the actual coefficients since this method will provide approximate values only and the capacities so obtained may in fact be lower than actual. It is recommended that the actual flow coefficient be obtained from the pressure reducing valve manufacture and reference books be consulted for the flow coefficient of the by-pass valve (National Board Inspection Code ANSI/NB-23, Appendix G, 1998).

Pipe Data Table

Nominal Pipe Size, Inches	Actual external diameter, inches	Approx. internal diameter, inches	Approx. internal area square inches
3/8	0.675	0.49	0.19
1/2	0.840	0.62	0.3
3/4	1.050	0.82	0.53
1	1.315	1.05	0.86
1 1/4	1.660	1.38	1.5
1 1/2	1.900	1.61	2.04
2	2.375	2.07	3.36
2 1/2	2.875	2.47	4.78
3	3.500	3.07	7.39
3 1/3	4.000	3.55	9.89
4	4.500	4.03	12.73
5	5.563	5.05	19.99
6	6.625	6.07	28.89
8	8.625	8.07	51.15
10	10.750	10.19	81.55
12	12.750	12.09	114.8

Note: In applying these rules, the area of the pipe is always based upon standard weight pipe and the inlet size of the pressure reducing valve.

Adapted from National Board Inspection Code ANSI/NB-23, Appendix G, 1998.

SIZING GUIDELINES PIPE DATA TABLE

CAPACITY OF SATURATED STEAM TABLE

(lb/hr) per sq. in. of pipe area

Outlet pres.				P	RESSURE	REDUCIN	IG VALVE	INLET PR	ESSURE, I	PSI			
psi	1500	1450	1400	1350	1300	1250	1200	1150	1100	1050	1000	950	900
1000	76560	72970	69170	64950	60540	55570	49930	43930	35230	25500	_	_	_
950	77430	74180	70760	67000	63100	58770	53920	48610	42380	34890	24910	_	_
900	77750	74810	71720	68340	64870	61040	56820	52260	47050	41050	33490	23960	_
850	77830	74950	72160	69130	66020	62610	58900	54930	50480	45470	39660	29080	23190
800	_	75070	72330	69490	66700	63680	60390	56910	53060	48800	43980	38340	31610
750	_	_	_	69610	66880	64270	61260	58200	54840	51170	47080	42420	37110
700	_	_	_	_	66900	64270	61520	58820	55870	52670	49170	45230	40860
650	_	_	_	_	_	_	61550	56260	56260	53480	50440	47070	43400
600	_	—	_	_	_	_	_	56270	56270	53660	51020	48470	45010
550	_	—	_	_	_	_	—	_	—	53810	51040	48470	45800
500	_	_	_	_	_	_	_	_	_	_	_	_	45850
450	_	—	_	_	_	_	_	_	_	_	_	_	45870

Dutlet pres.				P	RESSURE	REDUCIN	IG VALVE	INLET PR	ESSURE, I	PSI			
psi	850	800	750	700	650	600	550	500	450	400	350	300	250
800	22550	_	—	—	_	—	_	—	—	_	—	—	—
750	30600	21800	_	_	_	—	_	_	—	_	—	_	-
700	35730	29420	21020	_	_	_	_	_	_	_	_	_	-
650	39200	34250	28260	20190	_	_	_	_	_	_	_	_	-
600	41500	37470	32800	27090	19480	—	_	_	—	—	—	—	—
550	42840	39850	35730	31310	25940	18620	_	_	_	_	_	_	-
500	43330	40530	37610	33880	29760	24630	17720	_	_	_	_	_	-
450	43330	40730	38150	35260	31980	28080	23290	16680	—	—	—	—	—
400	_	40760	38220	35680	33050	29980	26380	21870	15760	_	_	_	-
350	_	—	_	_	33120	30690	27910	24570	20460	14790	_	_	-
300	_	_	_	_	33240	—	28140	25610	22620	18860	13630	—	—
250	_	—	_	_	_	_	28150	25650	23200	21000	17100	10800	-
200	_	_	_	_	_	—	_	_	—	21350	18250	15350	10900
175	—	—	—	—	—	—	_	—	—	—	18250	16000	12600
150	_	_	_	_	_	—	_	_	—	—	18250	16200	13400
125	—	—	—	—	—	—	_	—	—	—	18780	—	13600
110	—	—	—	—	—	—	_	—	—	—	—	—	13600
100	_	—	—	_	_	_	_	—	_	_	—	_	13600
85	_	—	—	_	_	_	_	—	_	_	—	_	13600
75	_	—	—	_	_	_	_	—	_	_	—	_	13600
60	_	—	_	_	_	_	_	_	_	_	—	_	13630

Outlet pres.				PF	RESSURE	REDUCIN	g valve i	NLET PRE	ESSURE, F	PSI			
psi	200	175	150	125	100	85	75	60	50	40	30	25	0
175	7250	_	_	_	_	_	_	_	_	_	_	_	_
150	9540	6750	_	_	_	_	_	_	_	_	_	_	_
125	10800	8780	6220	_	_	_	_	_	_	_	_	_	_
110	11000	9460	7420	4550	_	_	_	_	_	_	_	_	_
100	11000	9760	7970	5630	_	_	_	_	_	_	_	_	_
85	11000	_	8480	6640	4070	_	_	_	_	_	_	_	_
75	11000	_	_	7050	4980	3150	_	_	_	_	_	_	_
60	11000	_	_	7200	5750	4540	3520	_	_	_	_	_	_
50	11000	_	_	_	5920	5000	4230	2680	_	_	_	_	_
40	11000	_	_	_	_	5140	4630	3480	2470	_	_	_	_
30	11050	_	_	_	_	_	_	3860	3140	2210	_	_	_
25	_	_	_	_	_	_	_	_	3340	2580	1485	_	_
15	_	_	_	_	_	_	_	_	_	2830	2320	1800	_
10	_	_	_	_	_	_	_	_	_	_	_	2060	_

Where capacities are not shown for inlet and outlet conditions, use the highest capacity shown under the applicable inlet pressure column. Adapted from National Board Inspection Code ANSI/NB-23, Appendix G, 1998.

SAFETY VALVE SIZING BY COMPUTATION

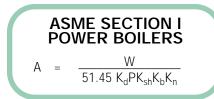
FORMULA KEY

- A = Actual discharge area through the valve at developed lift, inches² See formulas below
- C = Constant for gas or vapor based on ratio of specific heats C_p/C_v See Tables E2 and E3 beginning on page 55
- G = Specific gravity of fluid (Relates the densities of a fluid to that of a standard fluid) See Table E2 on page 55 1.0 for water @70°F and air at 14.7 psia and 60°F
- K_b = Dimensionless number used to correct for the reduction in capacity due to effect of backpressure:
 For conventional valves: See Graph E5 on page 58
 For balanced bellows valves: See Graph E6 on page 59
- K_d = Coefficient of discharge (including 90% de-rating) See Table E1 on page 55
- K_n = Napier steam correction factor for set pressures between 1423 and 2900 psig: <1423 psig K_n = 1.00

>1423 psig
$$K_n = \frac{.1906P - 1000}{.2292P - 1061}$$

K_p = Correction factor for overpressure See Table E7 on page 59 = 1.0 at 25% overpressure

- K_{sh} = Steam superheat correction factor (use 1.00 for saturated steam) See Table E4 on page 57
- K_v = Capacity correction factor for viscosity See Graph E8 on page 60
- K_w = Liquid capacity correction factor for backpressure service balanced bellows valves only *See Graph E9 on page 60*
- M = Molecular weight See Table E2 on page 55
- P = Stamped set pressure + overpressure + 14.7 psia See Spence Testing Specification Chart page 61
- ΔP = [Stamped set pressure + 3 psi or 10% (whichever is greater)] – backpressure, psi
- ΔP₁ = [Stamped set pressure + 3 psi or 25% (whichever is greater)] – backpressure, psi
- T = Absolute temperature at inlet, $^{\circ}R$ (degrees F + 460)
- W = Rated capacity, Steam (lbs/hr), Air (SCFM), Gas or Vapor (lbs/hr or SCFM), Liquid (GPM)


ASME SECTION IV

HEATING BOILERS

W

51.45 K_dPK_b

Z = Compressibility factor corresponding to T and P for gas and vapor (If unknown, use 1.0)

ASME SECTION VIII – PRESSURE VESSELS

A =

STEAM (LBS/HR)GAS OR VAPOR (LBS/HR)
$$A = \frac{W}{51.5 \text{ K}_d P \text{K}_{\text{sh}} \text{K}_b \text{K}_n}$$
 $A = \frac{W\sqrt{T}\sqrt{Z}}{C \text{K}_d P \sqrt{M} \text{ K}_b}$ $A = \frac{W\sqrt{T}}{418 \text{ K}_d P \text{K}_b}$ LIQUID-10% OVERPRESSURE
(GPM) CODE $A = \frac{W\sqrt{T}}{418 \text{ K}_d P \text{K}_b}$ $A = \frac{W\sqrt{G}}{38.0 \text{ K}_d \sqrt{\Delta P} \text{ K}_V \text{K}_W}$ GAS OR VAPOR (SCFM)LIQUID-25% OVERPRESSURE
(GPM) NON CODE $A = \frac{W\sqrt{G}\sqrt{T}\sqrt{Z}}{1.175 \text{ CK}_d P \text{K}_b}$ $A = \frac{W\sqrt{G}}{38.0 \text{ K}_d \sqrt{\Delta P}_1 \text{ K}_p \text{K}_V \text{K}_W}$

All sizing equations are in compliance with API 520 Part I 1997. Please refer to that document for further information on sizing. The user is responsible for verifying that these are the currently accepted formulae and for contacting the manufacturer(s) for all applicable required coefficients. Neither Spence Engineering Company nor it's agents assume any liability for improperly sized valves.

DESIGN

SPENCE

TABLE E1-SPENCE VALVE COEFFICIENTS (K_d)

(90% de-rated, as required by ASME)

Model	Steam/Air/Gas/Vapor (Kd)	Liquid (Kd)
Figure 31 Series Bronze	.878	_
Figure 31 Series Cast Iron	.878	—
Figure 800 Series	.878	.752
Figure 10 Series	.800	—
Figure 15 Series	.711	—
Figure 50 Series	.624	—

TABLE E2-TYPICAL PROPERTIES OF GASES

Gas or Vapor	Ratio of Specific Heats (k) @14.7 psia	Coefficient (C)	Molecular Weight (M)	Specific Gravity (Air=1)
Acetylene	1.25	342	26.04	.899
Acetic Acid	1.15	332	60.05	2.073
Air	1.40	356	28.97	1.00
Ammonia	1.30	347	17.03	.588
Argon	1.66	377	39.94	1.379
Benzene	1.12	329	78.11	2.696
N-Butane	1.18	335	58.12	2.006
Iso-Butane	1.19	336	58.12	2.006
Carbon Dioxide	1.29	346	44.01	1.519
Carbon Monoxide	1.40	356	28.01	.967
Chlorine	1.35	352	70.90	2.447
Ethane	1.19	336	30.07	1.038
Ethyl Alcohol	1.13	330	46.07	1.590
Ethylene	1.24	341	28.03	0.968
Freon 11	1.14	331	137.37	4.742
Freon 12	1.14	331	120.92	4.742
Freon 22	1.18	335	86.48	2.985
Freon 114	1.09	326	170.93	5.900
Helium	1.66	377	4.02	0.139
Hydrochloric Acid	1.41	357	36.47	1.259
Hydrogen	1.41	357	2.02	0.070
Hydrogen Chloride	e 1.41	357	36.47	1.259
Methane	1.31	348	16.04	0.554
Methyl Alcohol	1.20	337	32.04	1.106
Natural Gas	1.27	344	19.00	0.656
Nitric Oxide	1.40	356	30.00	1.036
Nitrogen	1.40	356	28.02	0.967
Nitrous Oxide	1.31	348	44.02	1.520
Oxygen	1.40	356	32.00	1.105
Propane	1.13	330	44.09	1.522
Propylene	1.15	332	42.08	3.60
Sulfur Dioxide	1.27	344	64.04	2.211

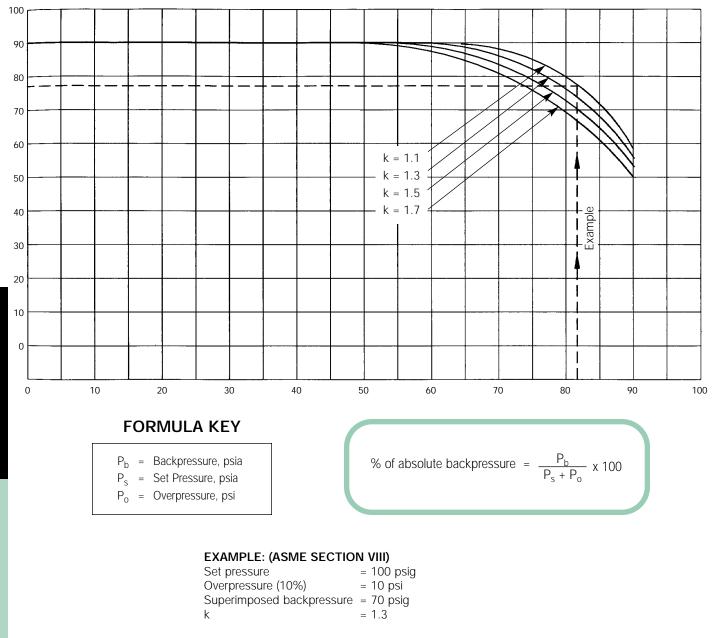
TABLE E1 TABLE E2

TABLE E3-GAS CONSTANT (C)

k	С
1.00	315
1.02	318
1.04	320
1.06	322
1.08	324
1.10	327
1.12	329
1.14	331
1.16	333
1.18	335
1.20	337
1.22	339
1.24	341
1.26	343
1.28	345
1.30	347
1.32	349
1.34	351
1.36	352
1.38	354
1.40	356
1.42	358
1.44	359
1.46	361
1.48	363
1.50	364
1.52	366
1.54	368
1.56	369
1.58	371
1.60	372
1.62	374
1.64	376
1.66	377
1.68	379
1.70	380
2.00	400
2.20	412

The relationship of (C) to (k) is expressed by the following equation:

$$C = 520 \sqrt{k \left(\frac{2}{k+1}\right)^{k+1}}$$


TABLE E4-SUPERHEAT CORRECTION FACTOR (K_{sh})

Set S																То	tal Te	mpera	ature o	of Sup	berhea	ted S	team															
Press. (psig)			300	320	340	360	380	400	420	440	460	480	500	520	540	560	580	600	°⊦ 620	640	660	680	700	720	740	760	780	800	8201	840	860	880	900	920	940	960	980	1.000
15			1.00																																			
20	259	1.00	1.00	1.00	0.99	0.99	0.98	0.98	0.97	0.96	0.95	0.94	0.93	0.92	0.91	0.90	0.89	0.88	0.87	0.96	0.86	0.85	0.84	0.83	0.83	0.82	0.81	0.81	0.80	0.79	0.79	0.78	0.78	0.77	0.77	0.76	0.75	0.75
40	287	-	1.00	1.00	1.00	0.99	0.99	0.98	0.97	0.96	0.95	0.94	0.93	0.92	0.91	0.90	0.89	0.88	0.87	0.87	0.86	0.85	0.84	0.84	0.83	0.82	0.82	0.81	0.80	0.79	0.79	0.78	0.78	0.77	0.77	0.76	0.75	0.75
60	308	-	_	1.00	1.00	0.99	0.99	0.98	0.97	0.96	0.95	0.94	0.93	0.92	0.91	0.90	0.89	0.88	0.87	0.87	0.86	0.85	0.84	0.84	0.83	0.82	0.82	0.81	0.80	0.80	0.79	0.78	0.78	0.77	0.77	0.76	0.76	0.75
80	324	_	_	_	1.00	1.00	0.99	0.99	0.98	0.97	0.96	0.94	0.93	0.92	0.91	0.90	0.89	0.89	0.88	0.87	0.86	0.85	0.84	0.84	0.83	0.82	0.82	0.81	0.80	0.80	0.79	0.78	0.78	0.77	0.77	0.76	0.76	0.75
100	338	-	-	-	_	1.00	1.00	0.99	0.98	0.97	0.96	0.95	0.94	0.93	0.92	0.91	0.90	0.89	0.88	0.87	0.86	0.85	0.85	0.84	0.83	0.82	0.82	0.81	0.80	0.80	0.79	0.78	0.78	0.77	0.77	0.76	0.76	0.75
120	350	-	_	-	_	1.00	1.00	0.99	0.98	0.97	0.96	0.95	0.94	0.93	0.92	0.91	0.90	0.89	0.88	0.87	0.86	0.85	0.85	0.84	0.83	0.82	0.82	0.81	0.80	0.80	0.79	0.78	0.78	0.77	0.77	0.76	0.76	0.75
140	361	-	_	_	_	-	1.00	1.00	0.99	0.98	0.96	0.95	0.94	0.93	0.92	0.91	0.90	0.89	0.88	0.87	0.86	0.85	0.85	0.84	0.83	0.82	0.82	0.81	0.80	0.80	0.79	0.78	0.78	0.77	0.77	0.76	0.76	0.75
160	371	-	_	_	_	-	1.00	1.00	0.99	0.98	0.97	0.95	0.94	0.93	0.92	0.91	0.90	0.89	0.88	0.87	0.86	0.86	0.85	0.84	0.83	0.82	0.82	0.81	0.80	0.80	0.79	0.79	0.78	0.77	0.77	0.76	0.76	0.75
180	380	_	_	_	—	_	_	1.00	0.99	0.98	0.97	0.96	0.95	0.93	0.92	0.91	0.90	0.89	0.88	0.87	0.86	0.86	0.85	0.84	0.83	0.82	0.82	0.81	0.80	0.80	0.79	0.79	0.78	0.77	0.77	0.76	0.76	0.75
200	388	-	_	_	Ι	-	_	1.00	0.99	0.99	0.97	0.96	0.95	0.93	0.92	0.91	0.90	0.89	0.88	0.87	0.86	0.86	0.85	0.84	0.83	0.83	0.82	0.81	0.81	0.80	0.79	0.79	0.78	0.77	0.77	0.76	0.76	0.75
220	395	-	-	—	-	-	_	1.00	1.00	0.99	0.98	0.96	0.95	0.94	0.93	0.92	0.91	0.90	0.89	0.88	0.87	0.86	0.85	0.84	0.84	0.83	0.82	0.81	0.81	0.80	0.79	0.79	0.78	0.78	0.77	0.76	0.76	0.75
240	403	-	-	—	-	-	_		1.00	0.99	0.98	0.97	0.95	0.94	0.93	0.92	0.91	0.90	0.89	0.88	0.87	0.86	0.85	0.84	0.84	0.83	0.82	0.81	0.81	0.80	0.79	0.79	0.78	0.78	0.77	0.76	0.76	0.75
260	409	-	-	—	-	-	_	_	1.00	0.99	0.98	0.97	0.96	0.94	0.93	0.92	0.91	0.90	0.89	0.88	0.87	0.86	0.85	0.85	0.84	0.83	0.82	0.81	0.81	0.80	0.79	0.79	0.78	0.78	0.77	0.76	0.76	0.75
280	416	-	-	_	_	_	-	-	1.00	1.00	0.99	0.97	0.96	0.95	0.93	0.92	0.91	0.90	0.89	0.88	0.87	0.86	0.85	0.85	0.84	0.83	0.82	0.82	0.81	0.80	0.80	0.79	0.78	0.78	0.77	0.77	0.76	0.75
300	422	-	-	—	_	-	_	_	-	1.00	0.99	0.98	0.96	0.95	0.93	0.92	0.91	0.90	0.89	0.88	0.87	0.86	0.86	0.85	0.84	0.83	0.82	0.82	0.81	0.80	0.80	0.79	0.78	0.78	0.77	0.77	0.76	0.75
350	436	-	-	—	_	-	_	_	-	1.00	1.00	0.99	0.97	0.96	0.94	0.93	0.92	0.91	0.90	0.89	0.88	0.87	0.86	0.85	0.84	0.83	0.83	0.82	0.81	0.81	0.80	0.79	0.78	0.78	0.77	0.77	0.76	0.76
400	448	-	-	—	-	-	_	_	-	-	1.00	0.99	0.98	0.96	0.95	0.93	0.92	0.91	0.90	0.89	0.88	0.87	0.86	0.85	0.84	0.84	0.83	0.82	0.81	0.81	0.80	0.79	0.79	0.78	0.77	0.77	0.76	0.76
450	460	-	-	—	-	-	_	_	-	-	_	1.00	0.99	0.97	0.96	0.94	0.93	0.92	0.91	0.89	0.88	0.87	0.86	0.86	0.85	0.84	0.83	0.82	0.82	0.81	0.80	0.79	0.79	0.78	0.78	0.77	0.76	0.76
500	470	-	_	_	_	-	_	_	-	-	_	1.00	0.99	0.98	0.96	0.94	0.93	0.92	0.91	0.90	0.89	0.88	0.87	0.86	0.85	0.84	0.83	0.82	0.82	0.81	0.80	0.79	0.79	0.78	0.78	0.77	0.76	0.76
550	480	-	_	_	Ι	-	_	_	-	-	_	_	1.00	0.99	0.97	0.95	0.94	0.92	0.91	0.90	0.89	0.88	0.87	0.86	0.85	0.84	0.83	0.82	0.82	0.81	0.80	0.80	0.79	0.78	0.78	0.77	0.76	0.76
600	489	-	_	_	_	-	_	_	-	-	_	_	1.00	0.99	0.98	0.96	0.94	0.93	0.92	0.90	0.89	0.88	0.87	0.86	0.85	0.84	0.84	0.83	0.82	0.81	0.80	0.80	0.79	0.78	0.78	0.77	0.76	0.76
650	497	-	_	_	_	-	_	_	-	-	_	_	_	1.00	0.99	0.97	0.95	0.94	0.92	0.91	0.90	0.89	0.87	0.86	0.86	0.85	0.84	0.83	0.82	0.81	0.81	0.80	0.79	0.78	0.78	0.77	0.77	0.76
700	506	-	_	_	_	-	_	_	-	-	_	_	_	1.00	0.99	0.97	0.96	0.94	0.93	0.91	0.90	0.89	0.88	0.87	0.86	0.85	0.84	0.83	0.82	0.81	0.81	0.80	0.79	0.79	0.78	0.77	0.77	0.76
750	513	_	_	_	_	-	_	_	_	_	_	_	_	1.00	1.00	0.98	0.96	0.95	0.93	0.92	0.90	0.89	0.88	0.87	0.86	0.85	0.84	0.83	0.83	0.82	0.81	0.80	0.79	0.79	0.78	0.77	0.77	0.76
800	520	-	_	_	Ι	-	_	_	-	-	_	_	-	-	1.00	0.99	0.97	0.95	0.94	0.92	0.91	0.90	0.88	0.87	0.86	0.85	0.84	0.84	0.83	0.82	0.81	0.80	0.80	0.79	0.78	0.78	0.77	0.76
850	527	-	_	_	_	-	_	_	-	-	_	_	_	_	1.00	0.99	0.98	0.96	0.94	0.93	0.92	0.90	0.89	0.88	0.87	0.86	0.85	0.84	0.83	0.82	0.81	0.81	0.80	0.79	0.78	0.78	0.77	0.76
900	533	-	_	_	_	-	_	_	-	-	_	_	_	_	1.00	1.00	0.99	0.97	0.95	0.93	0.92	0.90	0.89	0.88	0.87	0.86	0.85	0.84	0.83	0.82	0.81	0.81	0.80	0.79	0.79	0.78	0.77	0.77
950	540	-	_	_	_	-	_	_	-	-	_	_	_	_	_	1.00	0.99	0.97	0.95	0.94	0.92	0.91	0.89	0.88	0.87	0.86	0.85	0.84	0.83	0.82	0.82	0.81	0.80	0.79	0.79	0.78	0.77	0.77
1000	546	-	_	_	_	-	_	_	_	_	_	_	_	_	_	1.00	0.99	0.98	0.96	0.94	0.93	0.91	0.90	0.89	0.87	0.86	0.85	0.84	0.83	0.83	0.82	0.81	0.80	0.79	0.79	0.78	0.77	0.77
1050	552	-	_	_	Ι	-	_	_	-	-	_	_	-	-	-	1.00	1.00	0.99	0.97	0.95	0.93	0.92	0.90	0.89	0.88	0.87	0.86	0.85	0.84	0.83	0.82	0.81	0.80	0.80	0.79	0.78	0.77	0.77
1100	558	-	_	_	_	-	_	_	-	-	_	_	_	_	_	_	1.00	0.99	0.98	0.95	0.94	0.92	0.91	0.89	0.88	0.87	0.86	0.85	0.84	0.83	0.82	0.81	0.81	0.80	0.79	0.78	0.78	0.77
1150	563	-	_	_	_	-	_	_	-	-	_	_	_	_	_	_	1.00	0.99	0.98	0.96	0.94	0.92	0.91	0.90	0.88	0.87	0.86	0.85	0.84	0.83	0.82	0.81	0.81	0.80	0.79	0.78	0.78	0.77
1200	569	-	_	_	_	-	_	_	_	_	_	_	_	_	_	_	1.00	0.99	0.98	0.97	0.95	0.93	0.91	0.90	0.89	0.87	0.86	0.85	0.84	0.83	0.82	0.81	0.81	0.80	0.79	0.78	0.78	0.77
1250	574	-	_	_	_	-	_	_	_	_	_	_	_	_	-	_	_	1.00	0.99	0.97	0.95	0.93	0.92	0.90	0.98	0.88	0.87	0.85	0.85	0.84	0.83	0.82	0.81	0.80	0.79	0.79	0.78	0.77
1300	579	-	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	1.00	0.99	0.98	0.96	0.94	0.92	0.91	0.98	0.88	0.87	0.86	0.85	0.84	0.83	0.82	0.81	0.80	0.79	0.79	0.78	0.77
1350	584	-	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	1.00	0.99	0.98	0.96	0.94	0.93	0.91	0.90	0.88	0.87	0.86	0.85	0.84	0.83	0.82	0.81	0.80	0.80	0.79	0.78	0.78
1400	588	-	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	1.00	1.00	0.99	0.97	0.95	0.93	0.92	0.90	0.89	0.88	0.86	0.85	0.84	0.83	0.82	0.81	0.81	0.80	0.79	0.78	0.78
1450	593	-	_	_	-	-	_	_	_	-	_	_	_	-	_	_	_	-	1.00	0.99	0.97	0.95	0.94	0.92	0.90	0.89	0.88	0.86	0.85	0.84	0.83	0.82	0.81	0.81	0.80	0.79	0.78	0.78
1500	597	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	1.00	0.99	0.97	0.96	0.94	0.92	0.91	0.89	0.88	0.87	0.86	0.84	0.84	0.83	0.82	0.81	0.80	0.79	0.78	0.78
1600	606	_	_	-	-	_	_	-	-	_	-	_	-	_	_	-	_	-	1.00	0.98	0.97	0.96	0.94	0.93	0.91	0.89	0.88	0.86	0.85	0.84	0.83	0.82	0.81	0.80	0.79	0.78	0.78	0.77
1700	615	-	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	1.00	0.99	0.97	0.96	0.95	0.93	0.91	0.89	0.88	0.86	0.85	0.84	0.83	0.82	0.81	0.79	0.79	0.78	0.77	0.77
1800	622	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	0.99	0.98	0.97	0.95	0.93	0.91	0.89	0.88	0.86	0.85	0.84	0.82	0.81	0.80	0.79	0.79	0.78	0.77	0.76
1900	630	-	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	1.00	0.98	0.97	0.96	0.93	0.91	0.89	0.88	0.86	0.85	0.84	0.82	0.81	0.80	0.79	0.78	0.78	0.77	0.76
2000	636	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1.00	0.98	0.96	0.93	0.91	0.89	0.87	0.86	0.84	0.83	0.82	0.81	0.80	0.79	0.78	0.77	0.76	0.76
2100			_	_	-	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	1.00	0.98	0.95	0.93	0.91	0.89	0.87	0.86	0.84	0.83	0.82	0.81	0.79	0.78	0.77	0.77	0.76	0.75
2200	650	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1.00	0.98	0.95	0.93	0.91	0.89	0.87	0.85	0.84	0.82	0.81	0.80	0.79	0.78	0.77	0.76	0.75	0.74
2300	658	-	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1.00	0.98	0.95	0.93	0.91	0.89	0.87	0.85	0.84	0.82	0.81	0.79	0.78	0.77	0.76	0.75	0.75	0.74
	663		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.98	0.95	0.93	0.91	0.89	0.87	0.85	0.83	0.82	0.80	0.79	0.78	0.77	0.76	0.75	0.74	0.73
2500	669	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	0.98	0.95	0.93	0.90	0.88	0.86	0.84	0.83	0.81	0.80	0.78	0.77	0.76	0.75	0.74	0.73	0.72
2600			_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_				-									-		0.73		
2700			_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_															0.72		
2800			_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_															0.71		
2900		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_															0.70		
		I												I																								

GRAPH E5–SUPERIMPOSED (CONSTANT) BACKPRESSURE SIZING FACTOR (K_b)

CONVENTIONAL VALVES (Vapors and Gases Only)

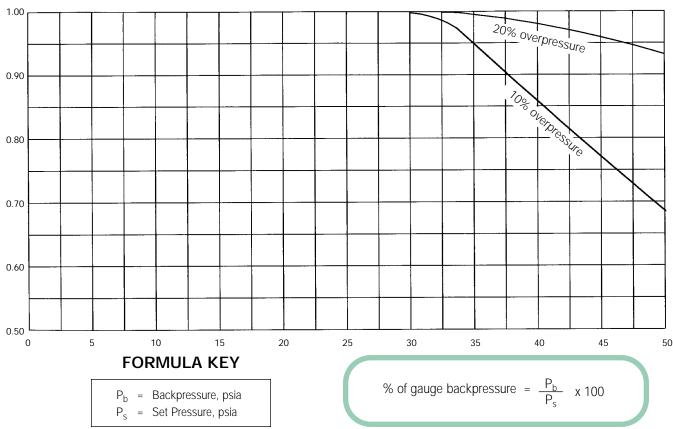
SOLUTION:

% of absolute backpressure	$=\frac{(70+10+14.7)}{(100+10+14.7)} \times 100 = 76$
K _b (follow dotted line)	= .89 (from curve)
Capacity with backpressure	= .89 (rated capacity without backpressure

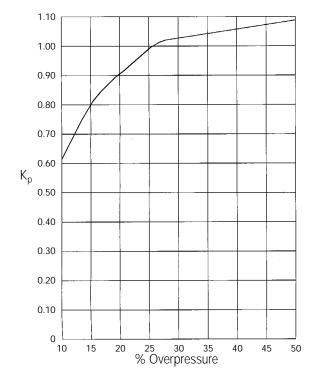
Note: This chart is typical and suitable for use only when the make of the valve or the actual critical flow pressure point for the vapor or gas is unknown; otherwise, the valve manufacturer should be consulted for specific data. This correction factor should be used only in the sizing of

conventional pressure relief valves that have their spring setting adjusted to compensate for the superimposed backpressure. It should not be used to size Balanced Bellow type valves (see next page).

Information from API 520 Part I, 1997



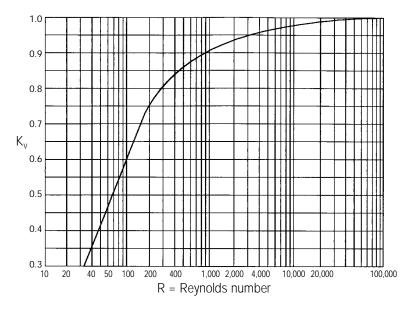
DESIGN


GRAPH E5

GRAPH E6-SUPERIMPOSED OR VARIABLE BACKPRESSURE SIZING FACTOR (Kb)

BELLOWS VALVES

Note: The curves above represent a compromise of the values recommended by a number of relief valve manufacturers and may be used when the make of the valve or the actual critical flow pressure point for the vapor of the gas is unknown. When make is known, the manufacturer should be consulted for the

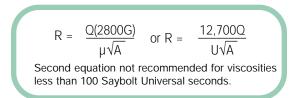

correction factor. These curves are for set pressure of 50 psig and above. They are limited to backpressure below critical flow pressure for a given set pressure. For subcritical flow backpressure below 50 psig, the manufacturer must be consulted for values of K_b. Information from API 520 Part I, 1997

GRAPH E7-CAPACITY CORRECTION FACTORS DUE TO OVERPRESSURE VALVES IN LIQUID SERVICE

Note: The curve on the left shows that, at 25% or less overpressure, capacity is affected by the change in lift, the change in orifice discharge coefficient and the change in over-pressure, Above 25% overpressure, capacity is affected only by the change in over-pressure. Valves operating at low overpressure tend to chatter, therefore, over-pressures of less than 10% should be avoided.

Information from API 520 Part I, 1997

FORMULA KEY

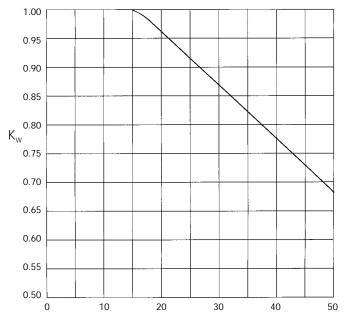

- A = Effective discharge area, inches²
- G = Specific gravity of the liquid (referred to as water) at the flowing temperature, G = 1.00 at 70°F
- Q = Flow rate at the flowing temperature, GPM
- μ = Absolute viscosity at the flowing temperature, centipoises
- U = Viscosity at the flowing temperature, Saybolt Universal seconds

GRAPH E8–CAPACITY CORRECTION FACTOR DUE TO VISCOSITY

When a relief valve is sized for viscous liquid service, it is suggested that it first be sized for nonviscous type application in order to obtain a preliminary required discharge area, (A). The next larger manufacturers' standard orifice orifice size should be used in determining the Reynold's number from either of the formulae below.

After the value of R is determined, the factor K_v is obtained from the graph on the left. K_v is applied to correct the preliminary required discharge area. If the corrected area exceeds the chosen standard orifice area, the above calculation should be repeated using the next larger standard orifice size.

Information from API 520 Part I, 1997



GRAPH E9–CAPACITY CORRECTION FACTOR DUE TO BACKPRESSURE (K_w)

BALANCED BELLOWS VALVES IN LIQUID SERVICE

% of gauge backpressure = $\frac{P_b}{P_s}$ x 100

FORMULA KEY

Note: The curve above represents values recommended various manufacturers. This curve may be used when the manufacturer is not known. Otherwise, the manufacturer should be consulted for the applicable correction factor. Information from API 520 Part I, 1997

SPENCE SRV TESTING SPECIFICATIONS

Spence Safety and Relief Valves (unlike some competitor's valves) are tested and conform to API 527. These Spence Testing Specifications are in conformance with applicable ASME Code *and* API 527.

SET PRESSURE TOLERANCE/BLOWDOWN/OVERPRESSURE

Set Pressure psig or inches HG	Set Pressure Tolerance	Blowdown	Overpressure
ASME Section I – Power B	oilers		
15 to 66	± 2 psig	2 to 4 psig	2 psig
67 to 70	± 2 psig	2 psig to 6%	3%
71 to 100	± 3%	2 psig to 6%	3%
101 to 250	± 3%	2% to 6%	3%
251 to 300	± 3%	2% to 15 psig	3%
301 to 375	± 10 psig	2% to 15 psig	3%
376 to 1000	± 10 psig	2% to 4%	3%
1001 and higher	± 1%	2% to 4%	3%
ASME Section IV – Heating	g Boilers		
Steam <u><</u> 15 psig	± 2 psig	2 to 4 psig	33.3%
Hot Water 15 to 60	± 3 psig	N/A *	10%
Hot Water 60 and higher	± 5%	N/A *	10%
ASME Section VIII – Press	sure Vessels		
15 to 30	± 2 psig	N/A *	3 psig
31 to 70	± 2 psig	N/A *	10%
71 and higher	± 3%	N/A *	10%
Non-Code Set Pressure T	olerance		
5	± .5 psig	N/A *	3 psig
6 to 9	± 1 psig	N/A *	3 psig
10 to 14	± 2 psig	N/A *	3 psig
Vacuum Set Point Tolerar	ICes		
0 to 9	± 1 inch HG	N/A *	6 inch HG
10 to 19	± 2 inches HG	N/A *	6 inch HG
20 and higher	± 4 inches HG	N/A *	6 inch HG

* Contact factory for accurate blowdown setting.

LEAK TESTING (in accordance with API 527)

Test Pressures - \leq 50 psig test at 5 psig below set pressure > 50 psig test at 90% of set pressure

Service	Set Pressure psig	Size	Acceptable Leakage rate							
Metal Seats										
Steam	15 – higher	All	No audible or visible leakage for 1 min							
Air	15 – 1000	\leq .307 sq in orifice	40 bubbles/min							
		> .307 sq in orifice	20 bubbles/min							
Liquid	15 – higher	< 1" inlet	10 cc/hr per inch of inlet size							
		\geq 1" inlet	10 cc/hr							
Soft Seats										
Steam	15 – higher	All	No audible or visible leakage for 1 min							
Air	15 – 1000	\leq .307" orifice size	0 bubbles/min							
		> .307" orifice size	0 bubbles/min							
Liquid	15 – higher	< 1" inlet size	0 cc/hr per inch of inlet size							
		\geq 1" inlet size	0 cc/hr							

SUMMARY OF ASME CODES & STANDARDS

The American Society of Mechanical Engineers (ASME) through its committees have established Boiler and Pressure Vessel codes for safety through rules and formulae indicating good practice.

The National Board of Boiler and Pressure Vessel Inspectors (NB) verify, administer and enforce the ASME codes wherever the codes have been adopted.

The ASME Codes are broken down into the following sections:

- Sec I Power Boilers
- Sec II Material Specifications
- Sec III Nuclear Power Plant Components
- Sec IV Heating Boilers (Low Pressure Steam & Hot Water)
- Sec V Non-destructive Examination
- Sec VI Recommended Rules for Care & Operation of Heating Boilers
- Sec VII Recommended Rules for Care of Power Boilers
- Sec VIII Pressure Vessels
- Sec IX Welding and Brazing Qualifications
- Sec X Fiberglass Reinforced Plastic Pressure Vessels
- Sec XI Rules for in service Inspection of Nuclear Power Plant Components

The three codes that pertain to Spence Pressure Relief Valves are as follows:

Section I (Power Boilers) - This is a construction code covering power, electric and miniature boilers and high temperature boilers used in stationary service. This section includes power boilers used in locomotive, portable and traction service.

Section IV (Heating Boilers) - This is another construction code covering the design, fabrication, installation and inspection of steam heating, hot water heating and hot water supply boilers which are directly fired by oil, gas, electricity or coal.

Section VIII (Pressure Vessels) - Basic rules for the construction, design, fabrication, inspection and certification of pressure vessels. These rules have been formulated on the basis of design principles and construction practices applicable to vessels designed for pressures up to 3000 PSI. Stamping and coding are also covered in this section.

The appropriate symbols (below) are required on all ASME coded Pressure Relief Valves:

N B

And one of the following for the applicable ASME code:

National Board Approved

Heating Boiler safety valves

Pressure vessel safety valves

Boiler safety Valve

COMPARISON OF ASME SECTION I TO SECTION VIII

CRITERIA	SECTION I	SECTION VIII
Set Point Tolerances	 ≤ 70 ≥ 70 & ≤ 300 ≥ 300 & ≤ 1000 ≥ 1000 10 psig ≥ 1000 1% (ASME Section I, PG-72.1, 1995) 	 ≤ 70 > 70 2 psig > 70 3% (ASME Section VIII, UG-126 (d), 1995)
Blowdown Tolerances	< 67 4 psig > 67 & < 250 6% > 250 & < 375 15 psig > 375 4% minimum blowdown for all valves: 2 psi or 2%, whichever is greater (ASME Section I, PG-72.2, 1995)	No blowdown requirement in service.
Capacity Certifications	Full lift at no greater than 3% or 2 psig, (whichever is greater) above the set pressure without chattering. The published rated capacity is 90% of the average capacity of the valves tested. (ASME Section I, PG-69.1.4 & 69.2.1, 1995)	Full lift at no greater than 10% or 3 psig, (whichever is greater) above the set pressure without chattering. The published rated capacity is 90% of the average capacity of the valves tested. (ASME Section VIII, UG-131 (c)(1) & (d)(1), 1995)
Lifting Device	Lifting devices are required to enable lifting the disc while 75% of the set pressure is present. (ASME Section I, PG-73.1.3, 1995)	Lifting devices are required to enable lifting the disc while 75% of the set pressure is present for Air, Steam & Hot Water (over 140°F). (ASME Section VIII, UG-136 (a)(3), 1995)
Sealing of Adjustments	All external adjustments are to be (wire) sealed to prevent changing the adjustment without breaking the seal. It also serves to identify the manufacturer or his authorized assembler making the adjustment. (ASME Section I, PG-73.1.8, 1995)	All external adjustments are to be (wire) sealed to prevent changing the adjustment without breaking the seal. It also serves to identify the manufacturer or his authorized assembler making the adjustment. (ASME Section VIII, UG-136 (a)(7), 1995)
Markings on Valve	The markings shall be placed on the valve or on a nameplate securely fastened to the valve by the manufacturer or assembler. The markings shall include: the ASME Code "V" symbol, the name of the manufacturer and assembler, model number, inlet size, set pressure, rated capacity, year built and the "NB" symbol. (ASME Section I, PG-110, 1995)	The markings shall be placed on the valve or on a nameplate securely fastened to the valve by the manufacturer or assembler. The markings shall include: the ASME Code "UV" symbol, the name of the manufacturer and assembler, model number, inlet size, set pressure (if applicable, the CDTP),rated capa- city in lbs/hr of steam, gal/min of water, SCFM or lb/min of air, year built and the "NB" symbol. (ASME Section VIII, UG-129) (a), 1995)
Materials	Seats, discs, springs and sliding surfaces shall be of corrosion resistant material and listed in ASTM specifications. Bodies and bonnets must be listed in ASME Section II. (ASME Section I, PG-73.2, 1995)	Seats, discs, springs and sliding surfaces shall be of corrosion resistant material and listed in ASTM specifications. Bodies and bonnets must be listed in ASME Section II. (ASME Section VIII, UG-136 (b), 1995)

INSTALLATION, MAINTENANCE & TROUBLESHOOTING GUIDELINES

Spence Pressure Relief valves are safety devices designed to protect pressurized vessels, lines or systems during an overpressure event. The recommendations below are general and it is the responsibility of the user to assure that installation and maintenance are in accordance with the applicable ASME Codes, API 520 Part II, local jurisdictional requirements and any other requirements. Neither Spence Engineering nor its agents assume any liability for valves improperly installed, maintained or troubleshot.

A. INSTALLATION - SINGLE VALVE

- 1. Installation must be performed by qualified service personnel only.
- 2. Pressure relief devices intended for use in compressible fluid service shall be connected to the vessel in the vapor space above any contained liquid or to piping connected to the vapor space in the vessel that is to be protected. Pressure relief devices intended for use in liquid service shall be connected below the normal liquid level (ASME Section VIII, UG-135 (a), 1998).
- 3. The operating pressure of the system should be a minimum of 20% or 10 PSI, whichever is greater, below the set pressure of the valve. The set pressure of each pressure relief valve must be in conformance with pressure limits of the system and of the limits specified in the appropriate ASME codes.
- 4. Valves must be installed in an upright position with the spindle vertical. (ASME Section VIII, Appendix M, 1998). Mounting valves in any other position will cause additional friction on the guiding surfaces and the valve performance will be affected. Mounting valves in other positions may allow dirt and other foreign substances to accumulate in the valve and adversely affect the valve action.
- 5. The connection to the vessel should be provided with a radius to permit smooth flow to the valve sharp corners should be avoided.
- 6. Pressure Relief Valves for use on steam, air and water (over 140(F) shall be supplied with a lifting device (ASME Section VIII, UG-136 (a)(3), 1998).
- 7. Do not plug or cap any drain or vent openings. Remove any and all shipping plugs.
- 8. Test gags must be removed (if supplied). Failure to do so renders the valve inoperable and, due to overpressure may damage the Pressure Relief Valve, the system and/or cause personal injury.
- 9. Make sure the system is clean and free of any dirt, sediment or scale that might become lodged on the valve seats.
- 10. Apply a small amount of sealant only to the male threads and tighten valve by hand. Use the proper wrench on the hex area of the base, taking care not use excessive force during tightening.
- 11. The valve should be normally placed close to the protected equipment so that the valve will be fed properly under flowing conditions. However, valves

should be mounted downstream from any device at a distance sufficient to avoid turbulence.

- 12. In a pressure reducing valve station, it is recommended that the pressure relief valve be installed a minimum of 20 pipe diameters from the outlet of the pressure reducing valve to avoid turbulent flow and an unstable condition.
- 13. When Pressure Relief Valves are left on line during an extended shutdown, the valves should be inspected and re-tested due to the potential of corrosion, fouling or tampering.

Inlet Piping

- 14. The opening through all pipe, fittings, and nonreclosing pressure relief devices (if installed) between a pressure vessel and its pressure relief valve shall have at least the area of the pressure relief valve inlet. (ASME Section VIII, UG-135 (b)(1), 1998).
- 15. The flow characteristics of the upstream system shall be such that the cumulative total of all nonrecoverable inlet losses shall not exceed 3% of the valve set pressure (ASME Section VIII, Appendix M-7(a), 1998)

Outlet Piping

- Discharge pipes shall be at least of the same size as the pressure relief valve outlet (ASME Section VIII, Appendix M-8(a), 1998).
- 17. Where feasible, the use of a short discharge pipe or vertical riser, connected through long-radius elbows from each individual device, blowing directly to the atmosphere, is recommended (ASME Section VIII, Appendix M-8(a), 1998). Discharge piping should be designed to place the minimum load on the valve under all conditions of valve operation. See 16 of this Section.
- 18. When the nature of the discharge permits, whereby condensed vapor in the discharge line, or rain, is collected and piped to a drain, a Drip Pan Elbow (Spence DPE) is recommended. This construction has the further advantage of not transmitting discharge-pipe strains to the valve (ASME Section VIII, Appendix M, 1998).
- 19. The discharge piping should be anchored to prevent any swaying or vibration while the valve is discharging.
- 20. If excessive lengths of discharge piping and fittings are required, they should be sized larger than the valve outlet. Any discharge piping that appears to be excessive should be reviewed by calculation for back-pressure and piping strains.
- 21. Discharge lines from Pressure Relief Valves shall be designed to facilitate drainage or shall be fitted with drains to prevent liquid from lodging in the discharge side of the pressure relief device, and such lines shall lead to a safe place of discharge (ASME Section VIII UG-135(f), 1998).

Stop Valves

22. ASME Section I - No valve of any description shall be placed between the required safety valve or safety relief

INSTALLATION GUIDELINES

INSTALLATION, MAINTENANCE & TROUBLESHOOTING GUIDELINES - CONT'D

valve or valves and the boiler, nor on the discharge pipe between the safety valve or safety relief valve and the atmosphere (ASME Section I PG 71.2, 1998).

23. ASME Section VIII - There shall be intervening stop valves between the vessel and its pressure relief device or devices, or between the pressure relief device or devices and the point of discharge, except as under the conditions as stated in ASME Section VIII UG-135(d)(1) and in Appendix M.

B. INSTALLATION - MULTIPLE VALVES

- 1. All items listed above in the Installation of Single Valves should be followed.
- 2. When two or more required pressure relief devices are placed on one connection, the inlet internal crosssectional area of this connection shall be either sized to avoid restricting flow to the pressure relief devices or made at least equal to the combined inlet areas of the safety devices connected to it. (ASME Section VIII UG-136 (c)1998)
- 3. The sizing of any section of a common-discharge header downstream from each of the two or more pressure relieving devices that may reasonably be expected to discharge simultaneously shall be based on the total of their outlet areas. The effect of the back-pressure that may be developed when certain valves operate must be considered (ASME Section VIII, Appendix M-8 (b), 1998).
- 4. It is recommended that the smaller orifice valve be set at the lower set pressure and that it is installed up stream of the other valves.

C. MAINTENANCE

- Valves are set and sealed to prevent tampering, guarantee is void if any seal is broken. The setting, adjustment or repair should be done only by an Authorized Pressure Relief Valve repair facility.
- 2. The valves should be checked periodically to see that they are not clogged or seized due to dirt or other foreign matter and that they will operate satisfactorily.
- 3. Installation conditions should be reviewed, seals should be checked to verify that they are not broken and no unauthorized adjustments have been made.
- 4. Valves may be manually operated by means of the lifting lever only when the system pressure is at least 75% of the nameplate set pressure. A Pressure Relief Valve should never be lifted without 75% of the nameplate set pressure.
- 5. Pressure Relief Valves should be re-tested as part a normal routine inspection program. The intervals between tests can vary in accordance with the severity of the service condition. Guidelines for inspection are provided in the API Inspection Code and the National Board Inspection Code. However, consideration should be given to your local jurisdictional policies, your insurance company polices and/or your company policies.

6. Only original, unmodified manufacturer parts should be used to assure safe and proper operation.

D. TROUBLESHOOTING

- 1. Valves are set and sealed to prevent tampering, guarantee is void if any seal is broken. The setting, adjustment or repair should be done only by an Authorized Pressure Relief Valve repair facility.
- 2. Occasionally a newly installed valve may leak as a result of shipping and handling or installation procedures. For valves with levers, apply pressure to the inlet side equal to 75% of the operating pressure so that the lift lever can be manually activated. For valves without lift levers, raise the system pressure to the point of valve operation. In most instances, the valve will properly reseat and the leakage will stop.
- 3. If a valve is leaking under normal operating conditions, the following three scenarios should be checked:
 - a. Make sure that a minimum operating to set point differential is maintained according to the guidelines specified in the Spence Sizing Guidelines. *See page 50*
 - b. It is possible that dirt or foreign material is lodged under the seat. Perform the check as outlined in part 2 of the troubleshooting.
 - c. Valve seating surface could be worn or damaged. Please contact your local Pressure Relief Valve Repair Facility.
- 4. If a valve is chattering it may be the result of the following:
 - a. Improper piping at valve inlet or outlet. See the appropriate ASME Codes and the Spence Installation Guidelines. *See page 67*
 - b. Valves are oversized. Review the Spence Sizing Guidelines. *See page 68*
 - c. Back-pressure may be present which may not have been accounted for in the original sizing. Review Sizing Formulas. *See page 68*
 - d. Valve holes may be plugged. Check to make sure all holes are not plugged and any shipping plugs have been removed.
 - e. Valve may be worn or damaged. Please contact your local Pressure Relief Valve Repair Facility.
- 5. If a valve is not popping at the set pressure as stamped on the nameplate, the following should be checked:
 - a. All Pressure Relief Valves have tolerance built into the set pressure. Review the Spence Engineering Testing Specifications and/or the appropriate ASME codes to ensure the valve is operating within the allowed tolerances.
 - b. Make sure the gauge reading the pressure is properly installed and calibrated. Compensate for the water leg between the valve and gauge.
 - c. Review the inlet piping to make sure that the inlet piping is at least the area of the Pressure Relief Valve

INSTALLATION, MAINTENANCE & TROUBLESHOOTING GUIDELINES - CONT'D

inlet. Review the inlet piping to ensure no other pressure drops can occur. See the Spence Installation Guidelines. *See page 67*

- d. Review the outlet piping to ensure that backpressure has been accounted for in the original sizing and selection of the valve. See the Spence Installation Guidelines. *See page 67*
- e. Valve may be worn or damaged. Please contact your local Pressure Relief Valve Repair Facility.
- 6. If a valve is not closing or has an excessive blowdown, the following should be checked:
 - a. It is possible that dirt or foreign material is lodged under the seat. Perform the check as outlined in part 2 of this Section.
 - b. Operating pressure may not be reduced below the reseating pressure of the valve. Reduce the operating pressure of the system to 50% of the normal operating pressure and then slowly bring the system back to the normal operating pressure. Make sure that a minimum operating to set point differential is maintained according the guidelines specified in the Spence Sizing Guidelines. *See page 68*
 - c. Valve may be worn or damaged. Please contact your local Pressure Relief Valve Repair Facility.

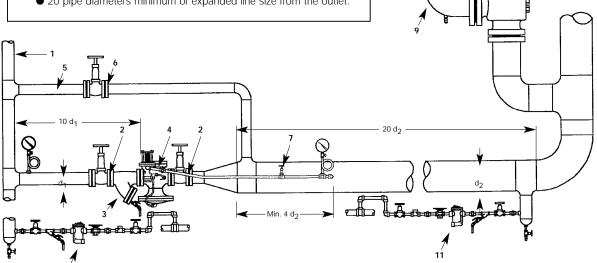
PLANNING MAIN VALVE INSTALLATION

A. PLANNING THE INSTALLATION

- 1. Locate the valve in a straight run of horizontal pipe. See Fig. 1.
- Allow headroom above the valve for access through the blind 2. flange. Provide clearance for stem withdrawal underneath.
- Prevent water hammer and erratic operation by installing 3. traps to provide proper drainage before and after the valve, and before secondary PRV or control valve.
- Avoid damaging affects of scale and dirt in pipe lines by 4. using a strainer as shown in Fig. 1.
- 5. Provide a 3-valve by-pass to facilitate inspection without interrupting service.
- 6. To eliminate excessive noise and erratic regulation with steam and other compressible fluids enlarge the delivery pipe size to effect a reasonable flow velocity at the reduced pressure. A tapered transition is recommended. If possible, avoid a sharp turn close to the regulator outlet and a bullheaded tee connection to the low pressure main.
- Install initial and delivery pressure gauges to indicate 7. performance. If the pressure rating of the delivery system or connected equipment is less than the initial steam pressure, provide a safety valve.

B. CONTROL PIPE

- Use 1/4" pipe for this line which connects the pilot diaphragm 1. chamber to the desired point of pressure control. See Fig. 1.
- Take the control at a point of minimum turbulence. Avoid 2. control immediately at the valve outlet or after a turn. When the delivery pipe expands in size select a spot at least 4 pipe diameters beyond the point of enlargement.
- 3. Pitch away from pilot to avoid erratic operation and fouling. Eliminate water pockets.
- Locate delivery pressure gauge in control pipe to show 4 pressure actually reaching pilot diaphragm.
 - 1. Inlet Pipe 2. Isolation Valve
 - 3. Strainer


12

- 4. PRV Type
- 5. Bypass Pipe
- 8. SRV Type 9. Drip Pan Elbow

7. Delivery Pipe

- 10. Vent Stack
- 6. Bypass Valve

- 11. Low Pressure Trap
- 12. High Pressure Trap
- Provide as much straight run of pipe on both sides of regulator as possible: 10 pipe diameters minimum to the inlet. • 20 pipe diameters minimum of expanded line size from the outlet.

10

C. DESIGN GUIDELINES TO MINIMIZE NOISE

- 1. Size the regulator to provide a maximum inlet velocity of about 10,000 FPM.
- Determine the regulator outlet velocity. if it would exceed 2. 30,000 FPM, use a Spence muffling orifice or a second stage regulator.
- 3 Expand regulator outlet piping to limit discharge line velocity to about 10,000 FPM.
- Avoid abrupt changes in pipe size. Limit pipe diameter 4. changes to two pipe sizes per stage of expansion. Do not use eccentric reducers.
- Directional changes in downstream piping should be made 5. only after the line size has been increased. Use long radius fittings; avoid bull-head tee connection.
- Provide as much straight run of pipe on both sides of 6. regulator as possible:
 - a 10 pipe diameters minimum to the inlet.
 - b 20 pipe diameters minimum of expanded line size from the outlet.
- 7. Size all piping components, including strainer and stop valves for a maximum flow velocity of about 10,000 FPM (Exception: An outlet stop valve mounted at the regulator outlet should be equal in size to the regulator). In areas where low sound levels are specified, reduce this limit by 25% to 50%.
- To limit noise transmission through the building's structure. 8. keep the regulator and piping at least 3 feet away from solid surfaces. Use sound-isolating piping supports.
- 9. Apply high density insulation to the regulator body, piping and system components. Insulation reduces heat loss significantly and can provide moderate (3-6 dB) local noise attenuation.
- 10. Use a Spence noise suppressor to reduce the propagation of noise via the downstream piping.

IALVE INSTALLATION

PLANNING MAIN

0

PFNC

MAIN VALVE SIZING BY COMPUTATION

FORMULA KEY

- A = Area of Pipe in $(inches)^2$
- C_V = Valve Coefficient
- EDR = Equivalent Direct Radiation (Sq. Ft.)
 - F = Pipe Area Factor (see Pipe Factors Table)
 - ft = Feet
 - G = Specific Gravity
 - ΔP = Pressure Drop, P1 P2 psi
 - P1 = Inlet Pressure, psia (psi + 14.7)
 - P₂ = Reduced Pressure, psia (psi + 14.7)
- P_C = Pressure at Thermodynamic Critical Point, psia (water = 3206 psia)
- P_V = Vapor Pressure, psia

- $\Delta Ps = P_1 P_v \text{ when } P_2 > P_v$
- $\Delta Ps = P_1 (.96 .28 \ \sqrt{\frac{P_v}{P_C}} \) \ P_v \ when \ P_2 \le P_v$
- q = Liquid Flow Rate, U.S. gpm
- Q = Flow Rate, SCFH
- $T = Absolute T (T + 460)^{\circ}R$
- TSH = Steam Superheat (°F) =
 - Total Steam Temp. Saturated Steam Temp.
 - \overline{V} = Specific Volume FT³/#
 - V = Velocity, FPM
- W = Steam Flow, #/Hr.
- Ws = Flow, #/Hr. Superheated Steam

3

71 20 2673

To avoid interpolation or solve problems beyond the scope of the table, valve sizes may be determined by calculation as follows:

	2							
	C _V) (LOA	ADS		
		CRITICAL	WA	ſER	W = <u>G</u>	<u>ЭРМ</u> ХТ 2	emp. Rise	e (°F)
SATURATED STEAM:	$C_{V} = \frac{W}{2.1 \sqrt{\Delta P (P_{1} + P_{2})}}$	P2 ≤ .58 P1	FUE	L OIL	W = <u>G</u>	<u>БРМ</u> хт	emp. Rise	e (°F)
	2.1 √ΔP (P1 + P2)	ο _V - 1.71 P ₁	AIR			/00	emp. Rise	e (°F)
SUPERHEAT		P₂ ≤ .55 P1	RAD	DIATION	$W = -\frac{f^2}{2}$	EDR		
STEAM:	$C_V = \frac{W (1 + .0007TSH)}{2.1 \sqrt{\Delta P (P_{1+}P_{2})}}$	C _V = <u>W(1 + .0007TsH)</u> 1.75 P ₁	ABS	ORPTION	N W = 16-	-20 #/Hr.	/Ton-Hr.	
GAS:	P ₂ > .5 P ₁	$P_2 \le .5 P_1$	STN	1. atom	W = 0.1	#/Hr./#C	Dil	
	$C_{V} = \frac{Q}{963} \sqrt{\frac{GT}{\Delta P (P_1 + P_2)}}$	Cu= <u>Q √GT</u>						
	$C_{V} = 963 \text{ V} \Delta P (P_{1} + P_{2})$	834 P1			VELO	CITY		
LIQUID:	$P_2 > P_185 \Delta P_S$	P2 ≤ P1 − .85 ΔPs	STE	AM	V = 2.4	W⊽		
	$C_{V} = q \sqrt{\frac{G}{\Delta P}}$	C_{V} = .93q $\sqrt{\frac{G}{\Delta Ps}}$				~		
				F	PIPE FA	CTOR	S	
					OR STA			
				(SC	HEDUL	.E 40)	PIPE	
	FLOW			SIZE	FACTOR		FACTOR	
	I LOW			1/8	.55		95	
	STEAM $W = \frac{.0433}{\sqrt{7}}$	<u>(VxF</u>		1/ ₄ 3/ ₈		4	122 192	
							172	
	V				29	6	278	
	v AIR & GASES Q = <u>.0259 x</u>			1/2	1.8 2.9 5.1	6 8	278	
,	V				5.1	8	278	
	V	<u>V x F x P</u> 1 T		1/2 3/4	5.1 8.3	8	278 481	
	v AIR & GASES Q = <u>.0259 x</u>	<u>V x F x P</u> 1 T		¹ / ₂ ³ / ₄ 1	5.1 8.3 14	8 10	278 481 758	
	v AIR & GASES Q = <u>.0259 x</u>	<u>V x F x P</u> 1 T		1/2 3/4 1 1 ¹ /4	5.1 8.3 14	8 10 12	278 481 758 1076	

MAIN VALVE SIZING BY COMPUTATION

SPENCE

DATA
S
R
Ċ
Ш.

ý	; C			2													
Series	2000			.4-5.22	6.85	9.15	14.3	15.1	17.2								
N6	50%				5.3	9.2	14.3	20.8	37.5	90					I	I	
D50		I	I	2.2	3.3	4.9	5.0	10.1	10.8	I	I	I	Ι	I	I	I	I
D34	60%	I	I	I		3.3	7.5	10.4	14.4	21.6	32	52	84	118			I
	2 C	.25	.32	.32		l		I	I					I	I	I	
C34	-	I	I			5.5	12.5	17.3	24	36	53	86	139	196			
C20	010					7.5	14.0	20.0	30	47	69	115	186	250	436	700	1083
E6	Full				7.6	11.7	18.9	27.4	43	67	95	159	258	350	665	1018	1611
E5,E6	Normal				5.7	10.0	13.4	19.8	25	35	59	120	176	228	366	525	952
E2					7.6	11.7	18.9	27.4	44	68	96	143	202	255	465	748	1118
	Full		1.5	2.8	5.4	8.8	14.1	19.8	31	44	74	109	169	248	444	706	1113
-	Full 75%			2.1	4.0	6.6	10.6	14.8	23.3	33	56	82	127	186	333	530	835
-	Full 50%			1.4	2.7	4.4	7.0	9.9	15.5	22	37	55	85	124	222	353	557
ш	Normal		.65	1.5	4.8	7.5	10.4	14.6	17.6	24	43	78	115	151	249	377	631
	Normal 75%									18	33	59	87	114	187	283	474
	Normal 50%									12	22	39	58	76	125	189	316
Valve	Size	1/4	3/8	1/2	3/4	1	1 ¹ /4	11/2	2	$2^{1/_{2}}$	3	4	5	6	8	10	12

75% AND 50% REDUCED TRIM (Parabolic)

The Parabolic Discs given in the above table are designed to: a) Improve performance at minimum flows by improving stability over wide flow ranges. b) Provide easy field conversion to obtain a substantial increase or decrease in regulator Cv to meet system load requirements. c) Facilitate selection of smaller size safety relief valves. d) Size more precisely to the required Cv, thereby eliminating one of the most frequent causes of poor performance.

PROCESS CONTROL REGULATORS

REGULATOR Cv DATA

CONTROL VALVE CV DATA

KOMBAT Cv TABLE

Valve Size	Orifice	Cv
1/2	С	0.7
	E	2.1
	А	3.3
	В	4.3
	Т	5.2
3/4	Т	7.0
1	Т	11.0
1-1/4	Т	20.0
1-1/2	Т	25.0
2	Т	30.0
2-1/2	Т	71
3	Т	94
4	Т	146

INTIMIDATOR Cv TABLE

SIZE	PORT SIZE	Cv
1/2	1/8	0.08
	3/16	0.5
	1/4	1.5
	5/8	5.1
3/4	1/8	0.08
	3/16	0.5
	1/4	1.5
	5/8	6
	7/8	10.3
1	5/8	6.2
	7/8	12.1
	1-1/4	18.2
1-1/2	7/8	13.2
	1-1/4	22
	1-3/4	37
2	1-1/4	23
	1-3/4	43
	2-1/4	67

DOCTOR Cv TABLE

Valve Size	Mixing Cv	Diverting Cv
1/2	5	5
3/4	7	7
1	12	12
1-1/2	28	28
2	50	52
2-1/2	70	76
3	116	108
4	158	160
6	352	365
8	475	475

BOSS Cv TABLE

Valve Size	Full Port Cv	40% Red. Cv	Seco-Sonic Cv	Seco-Cav Cv
2	65	26	48	32
2½	90	36	70	40
3	125	50	97	63
4	205	82	156	103
6	435	174	349	217
8	760	304	579	304

Reprinted from ASME 1998 BPVC Section I, IV, and VIII-1 by permission of The American Society of Mechanical Engineers. All rights reserved.

NOTES:

EXCERPTS FROM ASINE CODE SECTION I

Reprinted from ASME 1998 BPVC Section I, IV, and VIII-1 by permission of The American Society of Mechanical Engineers. All rights reserved.

NOTES:

PG-67.1

SAFETY VALVES AND SAFETY RELIEF VALVES¹⁶

PG-67 BOILER SAFETY VALVE REQUIREMENTS

PG-67.1 Each boiler shall have at least one safety valve or safety relief valve and if it has more than 500 sq ft (47 m²) of bare tube water-heating surface, or if an electric boiler has a power input more than 1100 kW, it shall have two or more safety valves or safety relief valves. For a boiler with combined bare tube and extended water-heating surface exceeding 500 sq ft (47 m²), two or more safety valves or safety relief valves are required only if the design steam generating capacity of the boiler exceeds 4000 lb/hr (1800 kg/hr). Organic fluid vaporizer generators require special consideration as given in Part PVG.

PG-67.2 The safety valve or safety relief valve capacity for each boiler (except as noted in PG-67.4) shall be such that the safety valve, or valves will discharge all the steam that can be generated by the boiler without allowing the pressure to rise more than 6% above the highest pressure at which any valve is set and in no case to more than 6% above the maximum allowable working pressure.

PG-67.2.1 The minimum required relieving capacity of the safety valves or safety relief valves for all types of boilers shall not be less than the maximum designed steaming capacity as determined by the Manufacturer and shall be based on the capacity of all the fuel burning equipment as limited by other boiler functions.

PG-67.2.2 The minimum required relieving capacity for a waste heat boiler shall be determined by the Manufacturer. When auxiliary firing is to be used in combination with waste heat recovery, the maximum output as determined by the boiler Manufacturer shall include the effect of such firing in the total required capacity. When auxiliary firing is to be used in place of waste heat recovery, the minimum required relieving capacity shall be based on auxiliary firing or waste heat recovery, whichever is higher. **PG-67.2.3** The minimum required relieving capacity for electric boilers shall be in accordance with PEB-15.

PG-67.2.4 The minimum required relieving capacity in lb/hr for a high-temperature water boiler shall be determined by dividing the maximum output in Btu/hr at the boiler nozzle, produced by the highest heating value fuel for which the boiler is designed, by 1000.

PG-67.2.5 The minimum required relieving capacity for organic fluid vaporizers shall be in accordance with PVG-12.

PG-67.2.6 Any economizer which may be shut off from the boiler, thereby permitting the economizer to become a fired pressure vessel, shall have one or more safety relief valves with a total discharge capacity, in lbs/hr, calculated from the maximum expected heat absorption in Btu/hr, as determined by the Manufacturer, divided by 1000. This absorption shall be stated in the stamping (PG-106.4).

PG-67.3 One or more safety valves on the boiler proper shall be set at or below the maximum allowable working pressure (except as noted in PG-67.4). If additional valves are used the highest pressure setting shall not exceed the maximum allowable working pressure by more than 3%. The complete range of pressure settings of all the saturated-steam safety valves on a boiler shall not exceed 10% of the highest pressure to which any valve is set. Pressure setting of safety relief valves on high-temperature water boilers¹⁷ may exceed this 10% range.

PG-67.4 For a forced-flow steam generator with no fixed steam and waterline, equipped with automatic controls and protective interlocks responsive to steam pressure, safety valves may be provided in accordance with the above paragraphs or the following protection against overpressure shall be provided.

PG-67.4.1 One or more power-actuated pressure relieving valves¹⁸ shall be provided in direct communication with the boiler when the boiler is under pressure and shall

¹⁶Safety Valve: An automatic pressure relieving device actuated by the static pressure upstream of the valve and characterized by full-opening pop action. It is used for gas or vapor service.

Relief Valve: An automatic pressure relieving device actuated by the static pressure upstream of the valve which opens further with the increase in pressure over the opening pressure. It is used primarily for liquid service.

Safety Relief Valve: An automatic pressure-actuated relieving device suitable for use either as a safety valve or relief valve, depending on application.

Unless otherwise defined, the definitions relating to pressure relief devices in Appendix 1 of ASME PTC 25-1994, Pressure Relief Devices shall apply.

¹⁷Safety relief valves in hot water service are more susceptible to damage and subsequent leakage, than safety valves relieving steam. It is recommended that the maximum allowable working pressure of the boiler and the safety relief valve setting for high-temperature water boilers be selected substantially higher than the desired operating pressure so as to minimize the times the safety relief valve must lift.

¹⁸The power-actuated pressure relieving valve is one whose movements to open or close are fully controlled by a source of power (electricity, air, steam, or hydraulic). The valve may discharge to atmosphere or to a container at lower pressure. The discharge capacity may be affected by the downstream conditions, and such effects shall be taken into account. If power-actuated pressure relieving valves are also positioned in response to other control signals, the control impulse to prevent overpressure shall be responsive only to pressure and shall override any other control function.

receive a control impulse to open when the maximum allowable working pressure at the superheater outlet, as shown in the master stamping (PG-106.3), is exceeded. The total combined relieving capacity of the power-actuated relieving valves shall be not less than 10% of the maximum design steaming capacity of the boiler under any operating condition as determined by the Manufacturer. The valve or valves shall be located in the pressure part system where they will relieve the overpressure.

An isolating stop valve of the outside-screw-and-yoke type may be installed between the power-actuated pressure relieving valve and the boiler to permit repairs provided an alternate power-actuated pressure relieving valve of the same capacity is so installed as to be in direct communication with the boiler in accordance with the requirements of this paragraph.

Power-actuated pressure relieving valves discharging to intermediate pressure and incorporated into bypass and/or startup circuits by the boiler Manufacturer need not be capacity certified. Instead, they shall be marked by the valve manufacturer with a capacity rating at a set of specified inlet pressure and temperature conditions. Power-actuated pressure relieving valves discharging directly to atmosphere shall be capacity certified. This capacity certification shall be conducted in accordance with the provisions of PG-69.3. The valves shall be marked in accordance with the provisions of PG-69.4 and PG-69.5.

PG-67.4.2 Spring-loaded safety valves shall be provided, having a total combined relieving capacity, including that of the power-actuated pressure relieving capacity installed under PG-67.4.1, of not less than 100% of the maximum designed steaming capacity of the boiler, as determined by the Manufacturer, except the alternate provisions of PG-67.4.3 are satisfied. In this total, no credit in excess of 30% of the total required relieving capacity shall be allowed for the power-actuated pressure relieving valves actually installed. Any or all of the spring-loaded safety valves may be set above the maximum allowable working pressure of the parts to which they are connected, but the set pressures shall be such that when all of these valves (together with the power-actuated pressure relieving valves) are in operation the pressure will not rise more than 20% above the maximum allowable working pressure of any part of the boiler, except for the steam piping between the boiler and the primer mover.

PG-67.4.3 The total installed capacity of spring-loaded safety valves may be less than the requirements of PG-67.4.2 provided all of the following conditions are met.

PG-67.4.3.1 The boiler shall be of no less steaming capacity than 1,000,000 lb/hr (450,000 kg/hr) and installed in a unit system for power generation (i.e., a single boiler supplying a single turbine-generator unit).

PG-67.4.3.2 The boiler shall be provided with automatic devices, responsive to variations in steam pressure, which include no less than all the following:

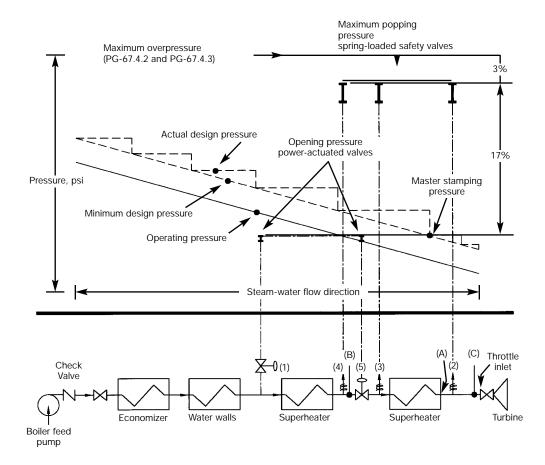
PG-67.4.3.2.1 A control capable of maintaining steam pressure at the desired operating level and of modulating firing rates and feedwater flow in proportion to a variable steam output; and

PG-67.4.3.2.2 A control which overrides PG-67.4.3.2.1 by reducing the fuel rate and feedwater flow when the steam pressure exceeds the maximum allowable working pressure as shown in the master stamping (PG-106.3) by 10%; and

PG-67.4.3.2.3 A direct-acting overpressure-tripactuating mechanism, using an independent pressure sensing device, that will stop the flow of fuel and feedwater to the boiler, at a pressure higher than the set pressure of PG-67.4.3.2.2, but less than 20% above the maximum allowable working pressure as shown in the master stamping (PG-106.3).

PG-67.4.3.3 There shall be not less than two springloaded safety valves and the total rated relieving capacity of the spring-loaded safety valves shall be not less than 10% of the maximum designed steaming capacity of the boiler as determined by the Manufacturer. These spring-loaded safety valves may be set above the maximum allowable working pressure of the parts to which they are connect but shall be set such that the valves will lift at a pressure no higher than 20% above the maximum allowable working pressure as shown in the master stamping (PG-106.3).

PG-67.4.3.4 At least two of these spring-loaded safety valve shall be equipped with a device that directly transmits the valve stem lift action to controls that will stop the flow of fuel and feedwater to the boiler. The control circuitry to accomplish this shall be arranged in a "fail-safe" manner (see Note).


NOTE: "Fail-safe" shall mean a circuitry arranged as either of the following:

(1) Energize to trip: There shall be at least two separate and independent trip circuits served by two power sources, to initiate and perform the trip action. One power source shall be a continuously charged dc battery. The second source shall be an ac-to-dc converter connected to the dc system to charge the battery and capable of performing the trip action. The trip circuits shall be continuously monitored for availability.

It is not mandatory to duplicate the mechanism that actually stops the flow of fuel and feedwater.

(2) De-energize to trip: If the circuits are arranged in such a way that a continuous supply of power is required to keep the circuits closed and operating and such that any interruption of power supply will actuate the trip mechanism, then a single trip circuit and single power supply will be enough to meet the requirements of this subparagraph.

PG-67.4.3.5 The power supply for all controls and devices required by PG-67.4.3 shall include at least one source contained within the same plant as the boiler and which is arranged to actuate the controls and devices continuously in the event of failure or interruption of any other power sources.

Pressure

- (A) = master stamping (PG-106.3)
- (B) = component design at inlet to stop valve (5) (PG-67.4.4.1)
- (C) = turbine throttle inlet (ANSI/ASME B31.1, paragraph 122.1.2, A.4)

Pressure Relief Valves

- (1) = power actuated (PG-67.4.1)
- (2), (3), and (4) = spring loaded safety (PG-67.4.2)
- (5) = superheater stop (PG-67.4.4)
- Relief Valve Flow Capacity (minimum, based on rated capacity of boiler) (1) = 10-30% (PG-67.4.1)
- = minimum of one valve (PG-68.1) (2)
- + (3) when downstream to stop valve (5) = (2)
- that required for independently fired superheaters (PG-68.3)
- (2) + (3) + (4) = 100% (1) (PG-67.4.2)

Relief valve Opening Pressure (maximum)

(1) = (A), and (B) when there is stop valve (5) (PG-67.4.1)

(2), (3), and (4) = (A) + 17% (PG-67.4.2)

(5 = (A) (PG-67.4.1)

Alternate Requirements for Safety Valves

Relief Valve Flow Capacity (minimum, based on rated capacity of boiler)

- (1) = 10 30% (PG-67.4.1)
- (2) = one valve minimum (PG-68.1)
- (2) + (3) when downstream to stop value (5) =
- that required for independently fired superheaters (PG-68.3) 10% total with minimum of 2 valves when there is a (4)
- stop valve (5) (PG-67.5.3.3)
- (2) + (4) = 10% with minimum of 2 valves when there is no stop valve (5) (PG-67.4.3.3)

Relief Valve Opening Pressure (maximum)

- (1) = (A), and (B) when there is stop valve (5) (PG-67.4.1)
- (2), (3), and (4) = (A) + 20% (PG-67.4.3.3) (5) = (A) (PG-67.4.1)

Automatic Pressure Controls (PG-67.4.3)

- (a) at (C) for normal operation under load (PG-67.4.3.2.1)
- (b) at (A) + 10% to override control (a) (PG-67.4.3.2.2) (c) at (A) + 20% to shut off flow of fuel and feedwater (PG-67.4.3.2.3)
- (d) safety valves at (4) to shut off flow of fuel and feedwater by "fail-safe" power circuit (PG-67.4.3.4)

FIG. PG-67.4 REQUIREMENTS FOR PRESSURE RELIEF FORCED-FLOW STEAM GENERATOR

CERPTS FROM E CODE 1998 SECTION I

98

98

PG-67.4.4 When stop valves are installed in the watersteam flow path between any two sections of a forced-flow steam generator with no fixed steam and waterline:

PG-67.4.4.1 The power-actuated pressure relieving valve(s) required by PG-67.4.1 shall also receive a control impulse to open when the maximum allowable working pressure of the component, having the lowest pressure level upstream to the stop valve, is exceeded; and

PG-67.4.4.2 The spring-loaded safety values shall be located to provide the pressure protection requirements in PG-67.4.2 or PG-67.4.3.

PG-67.4.5 A reliable pressure-recording device shall always be in service and records kept to provide evidence of conformity to the above requirements.

PG-67.5 All safety valve or safety relief valves shall be so constructed that the failure of any part cannot obstruct the free and full discharge of steam and water from the valve. Safety valves shall be of the direct spring-loaded pop type, with seat inclined at any angle between 45 deg. and 90 deg., inclusive, to the center line of the spindle. The coefficient of discharge of safety valves shall be determined by actual steam flow measurements at a pressure not more than 3% above the pressure at which the valve is set to blow and when adjusted for blowdown in accordance with PG-72. The valves shall be credited with capacities as determined by the provisions of PG-69.2.

Safety valves or safety relief valves may be used which give any opening up to the full discharge capacity of the area of the opening of the inlet of the valve (see PG-69.5), provided the movement of the steam safety valve is such as not to induce lifting of water in the boiler.

Deadweight or weighted lever safety valves or safety relief valves shall not be used.

For high-temperature water boilers safety relief valves shall be used. Such valves shall have a closed bonnet. For purposes of selection the capacity rating of such safety relief valves shall be expressed in terms of actual steam flow determined on the same basis as for safety valves. In addition the safety relief valves shall be capable of satisfactory operation when relieving water at the saturation temperature corresponding to the pressure at which the valve is set to blow.

A99 PG-67.6 A safety valve or safety relief valve over NPS 3 (DN 80), used for pressures greater than 15 psig (103 kPa), shall have a flanged inlet connection or a weld-end inlet connection. The dimensions of flanges subjected to boiler pressure shall conform to the applicable ASME Standards as given in PG-42. The facing shall be similar to those illustrated in the Standard.

PG-67.7 Safety valves or safety relief valves may have bronze parts complying with either SB-61 or SB-62, provided the maximum allowable stresses and temperatures do not exceed the values given in Table 1B of Section II, Part D, and shall be marked to indicate the class of material used. Such valves shall not be used on superheaters delivering steam at a temperature over 450°F (232°C) and 306°F (152°C) respectively, and shall not be used for high-temperature water boilers.

PG-68 SUPERHEATER AND REHEATER SAFETY VALVE REQUIREMENTS

PG-68.1 Except as permitted in PG-58.3.1, every attached superheater shall have one or more safety valves in the steam flow path between the superheater outlet and the first stop valve. The location shall be suitable for the service intended and shall provide the overpressure protection required. The pressure drop upstream of each safety valve shall be considered in the determination of set pressure and relieving capacity of that valve. If the superheater outlet header has a full, free steam passage from end to end and is so constructed that steam is supplied to it at practically equal intervals throughout its length so that there is a uniform flow of steam through the superheater tubes and the header, the safety valve, or valves, may be located anywhere in the length of the header.

PG-68.2 The discharge capacity of the safety valve, or valves, on an attached superheater may be included in determining the number and size of the safety valves for the boiler, provided there are no intervening valves between the superheater safety valve and the boiler, and provided the discharge capacity of the safety valve, or valves, on the boiler, as distinct from the superheater is at least 75% of the aggregate valve capacity required.

PG-68.3 Every separately fired superheater which may be shut off from the boiler and permit the superheater to become a fired pressure vessel shall have one or more safety valves having a discharge capacity equal to 6 lb of steam per hour per square foot of superheater surface measured on the side exposed to the hot gases. As an alternative the Manufacturer may also calculate the minimum safety valve discharge capacity in lbs. of steam per hour from the maximum expected heat absorption (as determined by the Manufacturer) in Btu/hr, divided by 1,000. In the case of electrically heated superheaters, the safety valve capacity shall be based upon $3^{1/2}$ lb/hr/kW input. The number of safety valves installed shall be such that the total capacity is at least equal to that required.

PG-68.4 Every reheater shall have one or more safety valves, such that the total relieving capacity is at least equal to the maximum steam flow for which the heater is designed. The capacity of the reheater safety valves shall not

SECTION I

be included in the required relieving capacity for the boiler and superheater.

One or more valves with a combined relieving capacity not less than 15% of the required total shall be located along the steam flow path between the reheater outlet and the first stop valve. The pressure drop upstream of the valves on the outlet side of the reheater shall be considered in determining their set pressure.

PG-68.5 A soot blower connection may be attached to the same outlet from the superheater or reheater that is used for the safety valve connection.

PG-68.6 Every safety valve used on a superheater or reheater discharging superheated steam at a temperature over 450°F (232°C) shall have a casing, including the base, body, and bonnet and spindle, of steel, steel alloy, or equivalent heat-resisting material.

The valve shall have a flanged inlet connection, or a weld-end inlet connection. It shall have the seat and disk of suitable heat erosive and corrosive resisting material, and the spring fully exposed outside of the valve casing so that it shall be protected from contact with the escaping steam.

PG-69 CERTIFICATION OF CAPACITY OF SAFETY AND SAFETY RELIEF VALVES

PG-69.1 Before the Code symbol is applied to any safety or safety relief valve, the valve manufacturer shall have the relieving capacity of his valves certified in accordance with the provisions of this paragraph.

PG-69.1.1 Capacity certification tests shall be conducted using dry saturated steam. The limits for test purposes shall be 98% minimum quality and 20°F (11°C) maximum superheat. Correction from within these limits may be made to the dry saturated condition.

PG-69.1.2 Tests shall be conducted at a place which meets the requirements of Appendix A-312.

PG-69.1.3 Capacity test data reports for each valve design and size, signed by the manufacturer and Authorized Observer witnessing the tests, together with drawings showing the valve construction, shall be submitted to the ASME designee for review and acceptance.¹⁹

PG-69.1.4 Capacity certification tests shall be conducted at a pressure which does not exceed the set pressure by 3% or 2 psi, whichever is greater. Safety and

safety relief valves shall be adjusted so that the blowdown does not exceed 4% of the set pressure. For valves set at or below 100 psi (690 kPa), the blowdown shall be adjusted so as not to exceed 4 psi (28 kPa). Safety valves used on forcedflow steam generators with no fixed steam and waterline, and safety relief valves used on high-temperature water boilers shall be adjusted so that the blowdown does not exceed 10% of the set pressure. The reseating pressure shall be noted and recorded.

PG-69.2 Relieving capacities shall be determined using one of the following methods.

PG-69.2.1 Three Valve Method. A capacity certification test is required on a set of three valves for each combination of size, design, and pressure setting. The capacity of each valve of the set shall fall within a range of $\pm 5\%$ of the average capacity. If one of the three valves tested falls outside this range, it shall be replaced by two valves, and a new average shall be calculated based on all four valves, excluding the replaced valve. Failure of any of the four capacities to fall within a range of $\pm 5\%$ of the new average shall be cause to refuse certification of that particular valve design.

The rated relieving capacity for each combination of design, size, and test pressure shall be 90% of the average capacity.

PG-69.2.2 Slope Method. If a Manufacturer wishes to apply the Code Symbol to a design of pressure relief valves, four valves of each combination of pipe size and orifice size shall be tested. These four valves shall be set at pressures which cover the approximate range of pressures for which the valve will be used or covering the range available at the certified test facility that shall conduct the tests. The capacities based on these four tests shall be as follows:

(a) The slope W/P of the actual measured capacity versus the flow pressure for each test point shall be calculated and averaged:

slope =
$$\frac{W}{P}$$
 = $\frac{\text{measured capacity}}{\text{absolute flow rating pressure, psia}}$

All values derived from the testing must fall within $\pm 5\%$ of the average value:

minimum slope = 0.95 x average slope

maximum slope = 1.05 x average slope

If the values derived from the testing do not fall between the minimum and maximum slope values, the Authorized Observer shall require that additional valves be tested at the rate of two for each valve beyond the maximum and minimum values with a limit of four additional valves.

The relieving capacity to be stamped on the valve shall not exceed 90% of the average slope times the absolute accumulation pressure:

¹⁹Valve capacities are published in "Pressure Relief Device Certifications." This publication may be obtained from the National Board of Boiler and Pressure Vessel Inspectors, 1055 Crupper Ave., Columbus, Ohio 43229.

stamped capacity \leq rated slope (1.03 x set pressure

PG-69.2.3 Coefficient of Discharge Method A coefficient of discharge for the design, K, may be established for a specific valve design according to the following procedure.

(a) For each design, the safety or safety relief valve manufacturer shall submit for test at least three valves for each of three different sizes (a total of nine valves). Each valve of a given size shall be set at a different pressure, covering the range of pressures for which the valve will be used or the range available at the facility where the tests are conducted.

(b) Tests shall be made on each safety or safety relief valve to determine its lift at capacity, popping, and blowdown pressures, and actual relieving capacity. An individual coefficient, K_D , shall be established for each valve as follows:

 $K_D = \frac{\text{actual flow}}{\text{theoretical flow}} = \text{individual coefficient of discharge}$

Where actual flow is determined by test and theoretical flow, W_T is calculated by one of the following equations:

For 45 deg. seat

$$W_T = 51.5 \text{ x} \pi DLP \text{ x} 0.707$$

For flat seat

$$W_T = 51.5 \text{ x} \pi DLP$$

For nozzle

 $W_T = 51.5 \ AP$

Where

 W_T = theoretical flow, lb/hr A = nozzle throat area, sq in. P = (1.03 x set pressure + 14.7), or = (set pressure + 2 + 14.7), whichever is greater, psia L = lift pressure at P, in.

$$D =$$
 seat diameter, in.

The average of the coefficients K_D of the nine tests required shall be multiplied by 0.90, and this product shall be taken as the coefficient K of that design. All individual coefficients of discharge, K_D shall fall within a range of $\pm 5\%$ of the average coefficient found. If a valve fails to meet this requirement, the Authorized Observer shall require two additional valves to be tested as replacements for each valve having an individual coefficient, K_D outside the $\pm 5\%$ range, with a limit of four additional valves. Failure of a coefficient, K_D to fall within ±5% of the new average value, excluding the replaced valve(s), shall be cause to refuse certification of that particular valve design.

The rated relieving capacity of all sizes and set pressures of a given design, for which *K* has been established under the provision of this paragraph, shall be determined by the equation:

$$W \leq W_T \mathbf{x} K$$

where

W = rated relieving capacity lb/hr

 W_T = theoretical flow defined by the same equation used to determine K_D lb/hr

K = coefficient of discharge for the design

The coefficient of discharge for the design shall not be greater than 0.878 (the product of 0.9 x 0.975). The coefficient shall not be applied to valves whose beta ratio (ratio of valve throat to inlet diameter) lies outside the range of 0.15 to 0.75, unless tests have demonstrated that the individual coefficient of discharge, K_D for valves at the extreme ends of a larger range, is within ±5% of the average coefficient, *K*.

For designs where the lift is used to determine the flow area, all valves shall have the same nominal lift to seat diameter ratio (L/D).

For pressures over 1500 psig and up to 3200 psig, the value of W shall be multiplied by the correction factor:

PG-69.3 If a manufacturer wishes to apply the Code symbol to a power-actuated pressure relieving valve under PG-67.4.1, one valve of each combination of inlet pipe size and orifice size to be used with that inlet pipe size shall be tested. The valve shall be capacity tested at four different pressures approximately covering the range of the certified test facility on which the tests are conducted. The capacities, as determined by these four tests, shall be plotted against the absolute flow test pressure and a line drawn through these four test points. All points must lie within ±5% in capacity value of the plotted line and must pass through 0-0. From the plotted line, the slope of the line dW/dP shall be determined and a factor of (0.90/51.45) x(*dW/dP*) shall be applied to capacity computations in the supercritical region at elevated pressures by means of the isentropic flow equation

$$WT = 1135.8 \quad \frac{0.90}{51.45} \times \frac{dW}{dP} \sqrt{\frac{P}{v}}$$

EXCERPTS FROM

where

d

W	=	capacity, lb of steam/hr
Р	=	absolute inlet pressure, psia
V	=	inlet specific volume, cu ft/lb
lW/dP	=	rate of change of measured capacity
		with respect to absolute pressure

NOTE: The constant 1135.8 is based on a y factor of 1.30 which is accurate for superheated steam at temperature above approximately 800°F. In interest of accuracy, other methods of capacity computations must be used at temperatures below 800°F at supercritical pressures.

PG-69.4 Power-actuated pressure relieving valves, having capacities certified in accordance with the provision of PG-69.3 and computed in accordance with the formula contained therein, shall be marked as required by PG-110 with the computed capacity, corresponding to 3% above the full load operating pressure and temperature conditions at the valve inlet when the valve is operated by the controller, and they shall also be stamped with the set pressure of the controller. When the valve is marked as required by this paragraph, it shall be the guarantee by the manufacturer that the valve also conforms to the details of construction herein specified.

PG-69.6 When changes are made in the design of a safety or safety relief valve in such a manner as to affect the flow path, lift, or performance characteristics of the valve, new tests in accordance with this Section shall be performed.

PG-70 CAPACITY OF SAFETY VALVES

PG-70.1 Subject to the minimum number required by PG-67.1, the number of safety valves or safety relief valves required shall be determined on the basis of the maximum designed steaming capacity, as determined by the boiler Manufacturer, and the relieving capacity marked on the valves by the manufacturer.

PG-71 MOUNTING

PG-71.1 When two or more safety valves are used on a boiler, they may be mounted either separately or as twin valves made by placing individual valves on Y-bases, or duplex valves having two valves in the same body casing. Twin valves made by placing individual valves on Y-bases, or duplex valves having two valves in the same body, shall be of approximately equal capacity.

When not more than two valves of different sizes are mounted singly the relieving capacity of the smaller valve shall be not less than 50% of that of the larger valve. **PG-71.2** The safety valve or safety relief valve or valves A99 shall be connected to the boiler independent of any other connection, and attached as close as possible to the boiler or the normal steam flow path, without any unnecessary intervening pipe or fitting. Such intervening pipe or fitting shall be not longer than the face-to-face dimension of the corresponding tee fitting of the same diameter, and pressure under the applicable ASME Standard listed in PG-42 and shall also comply with PG-8 and PG-39. Every safety valve or safety relief valve shall be connected so as to stand in an upright position, with spindle vertical. On high-temperature water boilers of the watertube forced-circulation type, the valve shall be located at the boiler outlet.

PG-71.3 The opening or connection between the boiler and the safety valve or safety relief valve shall have at least the area of the valve inlet. No valve of any description shall be placed between the required safety valve or safety relief valve or valves and the boiler, nor on the discharge pipe between the safety valve or safety relief valve and the atmosphere. When a discharge pipe is used, the crosssectional area shall be not less than the full area of the valve outlet or of the total of the areas of the valve outlets, discharging thereinto. It shall be as short and straight as possible and so arranged as to avoid undue stresses on the valve or valves.

All safety valve or safety relief valve discharges shall be so located or piped as to be carried clear from running boards or platforms. Ample provision for gravity drain shall be made in the discharge pipe at or near each safety valve or safety relief valve, and where water of condensation may collect. Each valve shall have an open gravity drain through the casing below the level of the valve seat. For iron- and steel-bodied valves exceeding NPS $2^{1}/_{2}$ (DN 65), the drain hole shall be tapped not less than NPS $^{3}/_{8}$ (DN 10).

Discharge piping from safety relief valves on hightemperature water boilers shall be provided with adequate provisions for water drainage as well as the steam venting.

The installation of cast iron bodied safety relief valves for high-temperature water boilers is prohibited.

PG-71.4 If a muffler is used on a safety valve or safety relief valve, it shall have sufficient outlet area to prevent back pressure from interfering with the proper operation and discharge capacity of the valve. The muffler plates or other devices shall be so constructed as to avoid a possibility of restriction of the steam passages due to deposit. Mufflers shall not be used on high-temperature water boiler safety relief valves.

When a safety valve or safety relief valve is exposed to outdoor elements which may affect operation of the valve, it is permissible to shield the valve with a satisfactory cover. The shield or cover shall be properly vented and arranged to permit servicing and normal operation of the valve. 1998 SECTION I

PG-71.5 When a boiler is fitted with two or more safety valves or safety relief valves on one connection, this connection to the boiler shall have a cross-sectional area not less than the combined areas of inlet connections of all the safety valves or safety relief valves with which it connects and shall also meet the requirements of PG-71.3.

PG-71.6 Safety valves may be attached to drums or headers by welding provided the welding is done in accordance with Code requirements

PG-71.7 Every boiler shall have proper outlet connections for the required safety valve, or safety relief valve, or valves, independent of any other outside steam connection, the area of opening to be at least equal to the aggregate areas of inlet connections of all of the safety valves or safety relief valves to be attached thereto. An internal collecting pipe, splash plate, or pan may be used, provided the total area for inlet of steam thereto is not less than twice the aggregate areas of the inlet connections of the attached safety valves. The holes in such collecting pipes shall be at least $\frac{1}{4}$ in. (6 mm) in diameter and the least dimension in any other form of opening for inlet of steam shall be $\frac{1}{4}$ in. (6 mm).

Such dimensional limitations to operation for steam need not apply to steam scrubbers or driers provided the net free steam inlet area of the scrubber or drier is at least 10 times the total area of the boiler outlets for the safety valves.

PG-71.8 If safety valves are attached to a separate steam drum or dome, the opening between the boiler proper and the steam drum or dome shall be not less than required by PG-71.7.

98 PG-72 OPERATION

PG-72.1 Safety valves shall be designed and constructed to operate without chattering and to attain full lift at a pressure no greater than 3% above their set pressure. After blowing down, all valves set at pressures of 375 psi or greater shall close at a pressure not lower than 96% of their set pressure, except that all drum valves installed on a single boiler may be set to reseat at a pressure not lower than 96% of the set pressure of the lowest set drum valve. All valves set at pressures below 375 psi shall have a blowdown not greater than that specified in the following table:

<u>Set Pressure, psi</u>	<u>Maximum Blowdown</u>
< 67	4 psi
≥ 67 and ≤ 250	6% of set pressure
> 250 and < 375	15 psi

The minimum blowdown for all safety or safety relief valves shall be 2 psi (13.8 kPa) or 2% of the set pressure, whichever is greater.

Safety valves used on forced-flow steam generators with no fixed steam and waterline, and safety relief valves used on high-temperature water boilers may be set and adjusted to close after blowing down not more than 10% of the set pressure. The valves for these special uses must be so adjusted and marked by the manufacturer.

PG-72.2 The popping point tolerance plus or minus shall not exceed that specified in the following table:

<u>Set Pressure, psi</u>	Tolerance, plus or minus <u>from set pressure</u>
≤ 70	2 psi
> 70 and \leq 300	3% of set pressure
> 300 and ≤ 1000	10 psi
> 1000	1% of set pressure

PG-72.3 The spring in a safety valve or safety relief valve shall not be reset for any pressure more than 5% above or below that for which the valve is marked unless the new setting is within the spring design range established by the manufacturer or is determined to be acceptable to the manufacturer.

If the set pressure is to be adjusted within the limits specified above, the adjustment shall be performed by the manufacturer, his authorized representative, or an assembler. An additional valve data tag identifying the new set pressure, capacity, and date shall be furnished and installed, and the valve shall be resealed.

PG-72.4 If the set pressure of a valve is changed so as to require a new spring, the spring shall be acceptable to the manufacturer. The spring installation and valve adjustment shall be performed by the manufacturer, his authorized representative, or an assembler. A new nameplate as described in PG-110 shall be furnished and installed, and the valve shall be resealed.

PG-73 MINIMUM REQUIREMENTS FOR SAFETY AND SAFETY RELIEF VALVES

PG-73.1 Mechanical Requirements

PG-73.1.1 The design shall incorporate guiding arrangements necessary to insure consistent operation and tightness.

PG-73.1.2 The spring shall be designed so that the full lift spring compression shall be no greater than 80% of the nominal solid deflection. The permanent set of the spring (defined as the difference between the free height and height measured 10 min after the spring has been compressed solid three additional times after presetting at room temperature) shall not exceed 0.5% of the free height.

PG-73.1.3 To provide a means for verifying whether it is free, each safety valve or safety relief valve shall have a substantial lifting device, which when activated will release the seating force on the disk when the valve is subjected to pressure of at least 75% of the set pressure. The lifting device shall be such that it cannot lock or hold the valve disk in lifted position when the exterior lifting force is released. Disks of safety relief valves used on hightemperature water boilers shall not be lifted while the temperature of the water exceeds 200°F (93°C). If it is desired to lift the valve disk to assure that it is free, this shall be done when the valve is subjected to a pressure of at least 75% of the set pressure. For high-temperature water boilers, the lifting mechanism shall be sealed against leakage.

PG-73.1.4 The seat of a safety valve shall be fastened to the body of the valve in such a way that there is no possibility of the seat lifting.

PG-73.1.5 A body drain below seat level shall be provided in the valve and this drain shall not be plugged during or after field installation. For valves exceeding NPS $2\frac{1}{2}$ (DN 65), the drain hole or holes shall be tapped not less than NPS $\frac{3}{4}$ (DN 10). For valves of NPS $2\frac{1}{2}$ (DN 65) or smaller, the drain hole shall not be less than $\frac{1}{4}$ in. (6 mm) in diameter.

PG-73.1.6 In the design of the body of the valve, consideration shall be given to minimizing the effects of water deposits.

PG-73.1.7 Valves having screwed inlet or outlet connections shall be provided with wrenching surfaces to allow for normal installation without damaging operating parts.

PG-73.1.8 Means shall be provided in the design of all valves for use under this Section, for sealing all external adjustments. Seals shall be installed by the manufacturer, his authorized representative, or an assembler at the time of the initial adjustment. After spring replacement and/or subsequent adjustment, the valve shall be resealed. Seals shall be installed in such a manner as to prevent changing the adjustment without breaking the seal and, in addition, shall serve as a means of identifying the manufacturer, his

authorized representative, or the assembler making the adjustment.

PG-73.2 Material Selections

PG-73.2.1 Cast iron seats and disks are not permitted.

PG-73.2.2 Adjacent sliding surfaces such as guides and disks or disk holders shall both be of corrosion resistant material. Springs of corrosion resistant material or having a corrosion resistant coating are required. The seats and disks of safety valves or safety relief valves shall be of suitable material to resist corrosion by the lading fluid.

NOTE: The degree of corrosion resistance, appropriate to the intended service, shall be a matter of agreement between the manufacturer and the purchaser.

PG-73.2.3 Materials used in bodies and bonnets or yokes shall be listed in Section II, Parts A and B, and identified in Tables 1A and 1B of Section II, Part D, as permitted for Section I construction. Materials used in nozzles, disks, and other parts contained within the external structure of the safety or safety relief valves shall be one of the following categories:

- (1) listed in ASME Section II;
- (2) listed in ASTM Specifications (see Note below);

(3) controlled by the manufacturer of the safety or safety relief valve by a specification insuring control of chemical and physical properties and quality at least equivalent to ASTM Standards (see Note below).

NOTE: It shall be the manufacturer's responsibility to insure that the allowable stresses at temperature meet the requirements of Section II, Part D, Appendix 1, Nonmandatory Basis for Establishing Stress Values in Tables 1A and 1B.

PG-73.3 Inspection of Manufacturing and/or Assembly

PG-73.3.1 A manufacturer shall demonstrate to the satisfaction of an ASME designee that his manufacturing, production, and test facilities and quality control procedures will insure close agreement between the performance of random production samples and the performance of those valves submitted for capacity certification.

PG-73.3.2 Manufacturing, assembly, inspection, and test operations including capacity, are subject to inspections at any time by an ASME designee.

PG-73.3.3 A Manufacturer or assembler may be granted permission to apply the V Code Symbol to production pressure relief valves capacity-certified in

1998 SECTION I

accordance with PG-69, provided the following tests are successfully completed. This permission shall expire on the fifth anniversary of the date it is initially granted. This permission may be extended for 5 year periods if the following tests are successfully repeated within the 6 month period before expiration.

(1) Two sample production pressure relief valves of a size and capacity within the capability of an ASME accepted laboratory shall be selected by an ASME designee.

(2) Operational and capacity tests shall be conducted in the presence of an ASME designee at an ASME accepted laboratory. The valve manufacturer or assembler shall be notified of the time of the test and may have representatives present to witness the test.

(3) Should any valve fail to relieve at or above its certified capacity or should it fail to meet performance requirements of this Section, the test shall be repeated at the rate of two replacement valves, selected in accordance with PG-73.3.3(1), for each valve that failed.

(4) Failure of any of the replacement valves to meet capacity or the performance requirements of this Section shall be cause for revocation within 60 days of the authorization to use the Code Symbol on that particular type of valve. During this period, the Manufacturer or assembler shall demonstrate the cause of such deficiency and the action taken to guard against future occurrence, and the requirements of PG-73.3.3 above shall apply.

98 A99 **PG-73.3.4** Use of the Code Symbol Stamp by an assembler indicates the use of original unmodified parts in strict accordance with the instructions of the manufacturer of the valve. However, an assembler may convert original finished parts by machining to another finished part for a specific application under the following conditions:

(a) Conversions shall be specified by the Manufacturer. Drawings and/or written instructions used for part conversion shall be obtained from the Manufacturer and shall include a drawing or description of the converted part before and after machining.

(b) The Assembler's quality control system, as accepted by a representative from an ASME designated organization, must describe in detail the conversion of original parts, provisions for inspection and acceptance, personnel training, and control of current Manufacturer's drawings and/or written instructions.

(c) The Assembler must document each use of a converted part.

(d) The Assembler must demonstrate to the Manufacturer the ability to perform each type of conversion. The Manufacturer shall document all authorizations granted to perform part conversions. The Manufacturer and Assembler shall maintain a file of such authorizations.

(e) At least annually a review shall be performed by the Manufacturer of an Assembler's system and machining

capabilities. The Manufacturer shall document the results of these reviews. A copy of this documentation shall be kept on file by the Assembler. The review results shall be made available to a representative from an ASME designated organization.

PG-73.3.5 In addition to the requirements of PG-110, the same plate marking shall include the name of the Manufacturer and the assembler. The Code Symbol Stamp shall be that of the assembler.

NOTE: Within the requirements of PG-73.3 and PG-73.4, a manufacturer is defined as a person or organization who is completely responsible for design, material selection, capacity certification, manufacture of all component parts, assembly, testing, sealing, and shipping of safety and safety relief valves certified under this Section.

An assembler is defined as a person or organization who purchases or receives from a manufacturer the necessary component parts or valves and assembles, adjusts, tests, seals, and ships safety or safety relief valves certified under this Section at a geographical location other than and using facilities other than those used by the manufacturer.

PG-73.4 Testing by Manufacturers or Assemblers

PG-73.4.1 Valves exceeding 1 in. (DN 25) inlet size or 300 psig (2070 kPa) set pressure shall meet the following requirements. Primary pressure containing cast and welded parts of pressure relief valves shall be tested at a pressure at 1.5 times the design pressure of the parts. These tests shall be conducted after all machining operations to the parts have been completed. There shall be no visible signs of leakage.

Closed bonnet pressure relief valves designed for discharge to a closed system shall be tested with a minimum of 30 psig (207 kPa) air or other gas in the secondary pressure zone. There shall be no visible signs of leakage.

PG-73.4.2 Every valve shall be tested with steam by the manufacturer or assembler to demonstrate the popping point, blowdown, tightness, and pressure containing integrity. Valves beyond the capability of production test facilities may be shop tested with air, provided required field tests and applicable adjustments are made.

PG-73.4.3 A seat tightness test shall be conducted at maximum expected operating pressure, but at a pressure not exceeding the reseating pressure of the valve. When being tested, a valve exhibiting no visible signs of leakage shall be considered adequately tight.

PG-73.4.4 A manufacturer or assembler shall have a documented program for the application, calibration, and maintenance of test gages.

SECTION

EXCERPTS FROM ASME CODE

Reprinted from ASME 1998 BPVC Section I, IV, and VIII-1 by permission of The American Society of Mechanical Engineers. All rights reserved.

- 84 -

PG-73.4.5 Testing time on steam valves shall be sufficient to assure that test results are repeatable and representative of field performance.

PG-73.4.6 Test fixtures and test drums, where applicable, shall be of adequate size and capacity to assure that the observed set pressure is consistent with the stamped set pressure within the tolerance required by PG-72.2.

PG-73.5 Design Requirements. At the time of submission of valves for capacity certification or testing in accordance with PG-69, the ASME designee has the authority to review design for conformity with the requirements of this Section and to reject or require modification of designs which do not conform, prior to capacity testing.

PG-110 STAMPING OF SAFETY VALVES

Each safety valve shall be plainly marked with the required data by the Manufacturer or Assembler (see PG-73.3.4) in such a way that the marking will not be obliterated in service. The marking shall be placed on the valve or on a nameplate securely fastened to the valve. The Code "V" symbol shall be stamped on the valve or nameplate, but the other required data may be stamped, etched, impressed, or cast on the valve or nameplate. The marking shall include the following:

(1) the name (or an acceptable abbreviation) of the Manufacturer and Assembler;

(2) Manufacturer's design or type number;

(3) NPS (the nominal pipe size of the valve inlet);

(4) set pressure____psi;

(5) capacity___lb/hr (in accordance with PG-67.5 and with the valve adjusted for the blowdown permitted by PG-72);

(6) year built, or alternatively, a coding may be marked on the valve such that the valve manufacturer or assembler can identify the year the valve was assembled and tested;

(7) ASME symbol as shown in Fig. PG-105.4.

PG-105 CODE SYMBOL STAMPS

PG-105.1 Authorization. Except as permitted in PG-105.6, no organization may assume responsibility for Code construction without having first received from the ASME a Certificate of Authorization to use one of the Code symbol stamps shown in Figs. PG-105.1 through PG-105.4. There are six such stamps, defined as follows:

S – power boiler symbol stamp	see Fig. PG-105.1
M – miniature boiler symbol stamp	see Fig. PG-105.1
E – electric boiler symbol stamp	see Fig. PG-105.1
A – boiler assembly symbol stamp	see Fig. PG-105.2
PP – pressure piping symbol stamp	see Fig. PG-105.3
V – safety valve symbol stamp	see Fig. PG-105.4

FIG. PG-105.1 OFFICIAL SYMBOLS FOR STAMPS TO DENOTE THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS' STANDARD FOR BOILERS

FIG. PG-105.2 OFFICIAL SYMBOL FOR STAMP TO DENOTE THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS' STANDARD FOR ASSEMBLY

FIG. PG-105.3 OFFICIAL SYMBOL FOR STAMP TO DENOTE THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS' STANDARD FOR WELDED PIPING

FIG. PG-105.4 OFFICIAL SYMBOL FOR STAMP TO DENOTE THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS' STANDARD FOR SAFETY VALVES

ASME CODE

EXCERPTS

Stamps for applying the Code symbol shall be obtained from the Society. Each boiler, superheater, waterwall, economizer, or boiler part to which a Code symbol is to be applied shall be fabricated by a Manufacturer who is in possession of an appropriate Code symbol stamp. A Certificate of Authorization to use the Code symbol "S", "M", "E", "A", "PP", or "V" stamp will be granted by the Society pursuant to the provisions of these paragraphs.

PG-105.2 Application for Certificate of Authorization. Any organization desiring a Certificate of Authorization shall apply to the Boiler and Pressure Vessel Committee of the Society, on forms issued by the Society, specifying the stamp desired and the scope of Code activities to be

1998 SECTION I

performed. When an organization intends to build Code items in plants in more than one geographical area, separate applications for each plant or a single application listing the addresses of all such plants may be submitted. Each application shall identify the Authorized Inspection Agency providing Code inspection at each plant. A separate Certificate of Authorization will be prepared and a separate fee charged by the Society for each plant.

Each applicant must agree that each Certificate of Authorization and each Code symbol stamp are at all times the property of the Society, that they will be used according to the rules and regulations of this Section of the Code, and that they will be promptly returned to the Society upon demand, or when the applicant discontinues the Code activities covered by his certificate, or when the Certificate of Authorization has expired and no new certificate has been issued. The holder of a Code symbol stamp shall not allow any other organization to use it.

Authorization to use Code symbol stamps may be granted or withheld by the Society in its absolute discretion. If authorization is granted, and the proper administrative fee paid, a Certificate of Authorization evidencing permission to use any such symbol, expiring on the triennial anniversary date thereafter, will be forwarded to the applicant. Each such certificate will identify the Code symbol to be used, and the type of shop and/or field operations for which authorization is granted. (See Appendix A-370). The certificate will be signed by the Chairman of the Boiler and Pressure Vessel Committee and the Director of Accreditation. Six months prior to the date of expiration of any such certificate, the applicant must apply for a renewal of such authorization and the issuance of a new certificate. The Society reserves the absolute right to cancel or refuse to renew such authorization returning pro rata, fees paid for the unexpired term.

PG-105.3 Agreement With Authorized Inspection Agency. As a condition of obtaining and maintaining a Certificate of Authorization to use the "S", "M", "E", "A", or "PP" Code symbol stamps, the Manufacturer or Assembler must have in force at all times, an inspection contract or agreement with an Authorized Inspection Agency as defined in PG-91 to provide inspection services. This inspection contract is a written agreement between the Manufacturer or Assembler and the inspection agency which specifies the terms and conditions under which the inspection services are to be furnished and which states the mutual responsibilities of the Manufacturer or Assembler and the Authorized Inspectors. The certificate holder shall notify the Society whenever its agreement with an Authorized Inspection Agency is cancelled or changed to another Authorized Inspection Agency.

Manufacturers or assemblers of safety valves are not required to have an inspection agreement with an Authorized Inspection Agency. A Certificate of Authorization may be granted to a manufacturer or assembler of safety valves to use the safety valve symbol stamp providing such stamp is applied only to safety valves that have been capacity certified in accordance with the requirements of this Section.

PG-105.4 Quality Control System. Any Manufacturer or Assembler holding or applying for a Certificate of Authorization to use the "S", "M", "E", "A", "PP", or "V" stamp shall have, and demonstrate, a quality control system to establish that all Code requirements including material, design, fabrication, examination (by the Manufacturer), and inspection for boilers and boiler parts (by the Authorized Inspector) will be met. The quality control system shall be in accordance with the requirements of Appendix A-300.

Before issuance or renewal of a Certificate of Authorization for use of the "S", "M", "E", "A", or "PP" stamps, the Manufacturer's facilities and organization are subject to a joint review by a representative of his inspection agency and an individual certified as an ASME designee who is selected by the concerned legal jurisdiction. When the jurisdiction assumes responsibility for leading the review, it shall have certified that its representative has met ASME criteria. A written description or checklist of the quality control system which identifies what documents and what procedures the Manufacturer will use to produce a Code item shall be available for review. The purpose of the review is to evaluate the applicant's quality control system and its implementation. The applicant shall demonstrate sufficient administrative and fabrication functions of the system to show that he has the knowledge and ability to produce the Code items covered by his quality control system. Fabrication functions may be demonstrated using current work, a mock-up, or a combination of the two. A written report to the Society shall be made jointly by the jurisdiction and the inspection agency employed by the Manufacturer to do his Code inspection. This report is then reviewed by the Subcommittee on Boiler and Pressure Vessel Accreditation. which will either issue a Certificate of Authorization or notify the applicant of deficiencies revealed by the review. In such a case, the applicant will be given an opportunity to explain or correct these deficiencies.

Certificates of Authorization will be endorsed to indicate the scope of activity authorized. Authorization may include field operations if the review team determines that these operations are adequately described in the quality

SECTION I

control manual, and this determination is accepted by the Society.

Before issuance or renewal of a Certificate of Authorization for use of the "V" stamp, the valve manufacturer's or assembler's facilities or organization are subject to a review by an ASME designee. A written description or checklist of the quality control system, which identifies the documents and procedures the manufacturer or assembler will use to produce Code safety and safety relief valves, shall be available for review. The ASME designee shall make a written report to the Society, where the Subcommittee on Boiler and Pressure Vessel Accreditation will act on it as described above.

The Manufacturer may at any time make changes in the quality control system concerning the methods of achieving results subject to acceptance by the Authorized Inspector. For manufacturers and assemblers of "V" stamped safety or safety relief valves, such acceptance shall be by the ASME designee.

For those areas where there is no jurisdiction or where a jurisdiction does not choose to select an ASME designee to review a vessel or vessel parts manufacturer's facility, that function shall be performed by an ASME designee selected by ASME. In either case, the ASME designee shall certify its representative has met ASME criteria. Where the jurisdiction is the Manufacturer's inspection agency, the joint review and joint report shall be made by the jurisdiction and another representative designated by the Society.

PG-105.5 Code Construction Before Receipt of Certificate of Authorization. When used to demonstrate his quality control system, a Manufacturer may start fabricating Code items before receipt of a Certificate of Authorization to use a Code symbol stamp under the following conditions:

(1) The fabrication is done with the participation of the Authorized Inspector and is subject to his acceptance.

(2) The activity shall have been performed in conformance with the applicant's accepted quality control system.

(3) The item is stamped with the appropriate Code symbol and certified once the applicant receives his Certificate of Authorization from the Society.

PG-105.6 Regulations on Use of Code Symbol Stamps. The Boiler and Pressure Vessel Committee may at any time make such regulations concerning the issuance and use of Code symbol stamps as it deems appropriate, and all such regulations shall become binding upon the holders of any valid Certificates of Authorization.

PART PVG REQUIREMENTS FOR ORGANIC FLUID VAPORIZERS

PVG-12 SAFETY VALVES

PVG-12.1 Safety valves shall be of a totally enclosed type so designed that vapors escaping beyond the valve seat shall not discharge into the atmosphere, except through an escape pipe that will carry such vapors to a safe point of discharge outside of the building. A suitable condenser that will condense all the vapors discharged from the safety valve may be used in lieu of piping the vapors to the atmosphere. The safety valve shall not have a lifting lever. The vaporizer shall be designed in accordance with the rules in this Code for a working pressure of at least 40 psi (256 kPa) above the operating pressure at which it will be used. Valve body drains are not mandatory.

PVG-12.2 Safety valves shall be disconnected from the vaporizer at least once yearly, when they shall be inspected, repaired if necessary, tested, and then replaced on the vaporizer.

PVG-12.3 In order to minimize the loss by leakage of material through the safety valve, a rupture disk may be installed between the safety valve and the vaporizer provided the following requirements are met.

PVG-12.3.1 The cross-sectional area of the connection to a vaporizer shall be not less than the required relief area of the rupture disk.

PVG-12.3.2 Every rupture disk shall have a specified bursting pressure at a specified temperature, shall be marked with a lot number, and shall be guaranteed by its manufacturer to burst within 5% (plus or minus) of its specified bursting pressure.

PVG-12.3.3 The specified bursting pressure at the coincident specified temperature shall be determined by bursting two or more specimens from a lot of the same material and of the same size as those to be used. The tests shall be made in a holder of the same form and pressure area dimensions as that with which the disk is to be used.

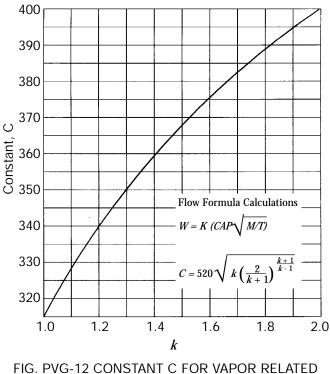
PVG-12.3.4 A rupture disk may be installed between a safety valve and the vaporizer provided:

PVG-12.3.4.1 The maximum pressure of the range for which the disk is designed to rupture does not exceed the opening pressure for which the safety valve is set or the maximum allowable working pressure of the vessel.

PVG-12.3.4.2 The opening provided through the rupture disk, after breakage, is sufficient to permit a flow equal to the capacity of the attached valve and there is no

chance of interference with the proper functioning of the valve; but in no case shall this area be less than the inlet area of the valve.

PVG-12.3.4.3 The space between a rupture disk and the valve should be provided with a pressure gage, try cock, free vent, or a suitable telltale indicator. This arrangement permits the detection of disk rupture or leakage.¹


PVG-12.4 Safety valve discharge capacity shall be determined from the formula:

$$W = CKAP M/T$$

where

- W = flow of vapor lb/hr
- C = constant for vapor which is a function of the ratio of Specific Heats k = Cp/Cv (see Fig. PVG-12) Note: Where k is not known, k = 1.001.

¹Users are warned that a rupture disk will not burst at its designed pressure if back pressure builds up in the space between the disk and the safety valve which will occur should leakage develop in the rupture disk due to corrosion or other cause.

TO RATIO OF SPECIFIC HEATS (K=CP/CV)

Reprinted from ASME 1998 BPVC Section I, IV, and VIII-1 by permission of The American Society of Mechanical Engineers. All rights reserved.

EXCERPTS FROM ASMF CODF K = coefficient of discharge for the design

A = discharge area of safety valve, sq in.

- P = (set pressure x 1.03) + Atmosphere Pressure, psia
- M = molecular weight
- T = absolute temperature at inlet, F + 460

PVG-12.5 Safety valves for organic fluid vaporizers shall be tested and certified under PG-69, and they shall be stamped with the rated relieving capacity in pounds per hour at coincident temperature as determined in PVG-12.4. The fluid identification shall be stamped on the nameplate.

PVG-12.6 The required minimum safety valve relieving capacity shall be determined from the formula:

$$W = \frac{C \times H \times 0.75}{h}$$

where

- *h* = latent heat of heat transfer fluid at relieving pressure, Btu/lb
- W= weight of organic fluid vapor generated per hour, lb
- *C* = maximum total weight or volume of fuel burned per hour, lb or cu ft
- H = heat of combustion of fuel, Btu/lb or Btu/cu ft (see A-17)

The sum of the safety valve capacities marked on the valves shall be equal to or greater than *W*.

PFT-44 OPENING BETWEEN BOILER AND SAFETY VALVE

The opening or connection between the boiler and safety valve shall have at least the area of the valve inlet.

After the boiler Manufacturer provides for the opening required by the Code, a bushing may be inserted in the opening in the shell to suit a safety valve that will have the capacity to relieve all the steam that can be generated in the boiler and which will meet the Code requirements.

No valve of any description shall be placed between the required safety valve or safety relief valve or valves and the boiler, or on the discharge pipe between the safety valve or safety relief valve and the atmosphere. When a discharge pipe is used, the cross-sectional area shall be not less than the full area of the valve outlet or of the total of the areas of the valve outlets discharging thereinto and shall be as short and straight as possible and so arranged as to avoid undue stresses on the valve or valves. NOTES:

EXCERPTS FROM ASNE CODE SECTION IV

PFNCF

Reprinted from ASME 1998 BPVC Section I, IV, and VIII-1 by permission of The American Society of Mechanical Engineers. All rights reserved.

NOTES:

SPENCE

Reprinted from ASME 1998 BPVC Section I, IV, and VIII-1 by permission of The American Society of Mechanical Engineers. All rights reserved.

ARTICLE 4 PRESSURE RELIEVING DEVICES

HG-400 PRESSURE RELIEVING VALVE REQUIREMENTS

HG-400.1 Safety Valve Requirements for Steam Boilers

(a) Each steam boiler shall have one or more officially rated safety valves that are identified with the V or HV Symbol of the spring pop type adjusted and sealed to discharge at a pressure not to exceed 15 psi (103 kPa).

(b) No safety valve for a steam boiler shall be smaller than NPS $\frac{1}{2}$ (DN 15). No safety valve shall be larger than NPS 4 $\frac{1}{2}$ (DN 115). The inlet opening shall have an inside diameter equal to, or greater than, the seat diameter.

(c) The minimum relieving capacity of valve or valves shall be governed by the capacity marking on the boiler called in HG-530.

(d) The minimum valve capacity in pounds per hour shall be the greater of that determined by dividing the maximum Btu output at the boiler nozzle obtained by the firing of any fuel for which the unit is installed by 1000, or shall be determined on the basis of the pounds of steam generated per hour per square foot of boiler heating surface as given in Table HG-400.1. For cast iron boilers constructed to the requirements of Part HC, the minimum valve capacity shall be determined by the maximum output method. In many cases a greater relieving capacity of valves will have to be provided than the minimum specified by these rules. In every case, the requirement of HG-400.1(e) shall be met.

(e) The safety valve capacity for each steam boiler shall be such that with the fuel burning equipment installed, and operated at maximum capacity, the pressure cannot rise more than 5 psi (35 kPa) above the maximum allowable working pressure.

(f) When operating conditions are changed, or additional boiler heating surface is installed, the valve capacity shall be increased, if necessary, to meet the new conditions and be in accordance with HG-400.1(e).

TABLE HG-400.1 MINIMUM POUNDS OF STEAM PER HOUR PER SQUARE FOOT OF HEATING SURFACE

Boiler Heating Surface	Firetube Boilers	Watertube Boilers
Hand fired	5	6
Stoker fired	7	8
Oil, gas, or pulverized fuel fired	8	10
Waterwall heating surface:		
Hand fired	8	8
Stoker fired	10	12
Oil, gas, or pulverized fuel fired	14	16

GENERAL NOTES:

- (a) When a boiler is fired only by a gas having a heat value not in excess of 200 Btu/cu ft., the minimum safety valves or safety relief valve relieving capacity may be based on the values given for hand fired boilers above.
- (b) The minimum safety valve or safety relief valve relieving capacity for electric boilers shall be 3 ¹/₂ lb/hr/kw input.
- (c) For heating surface determination, see HG-403.

The additional valves required, on account of changed conditions, may be installed on the outlet piping provided there is no intervening valve.

HG-400.2 Safety Relief Valve Requirements for Hot Water Boilers

(a) Each hot water heating or supply boiler shall have at least one officially rated safety relief valve, of the automatic reseating type, identified with the V or HV Symbol, and set to relieve at or below the maximum allowable working pressure of the boiler.

(b) Hot water heating or supply boilers limited to a water temperature not in excess of 210°F (99°C) may have, in lieu of the valve(s) specified in (a) above, one or more officially rated temperature and pressure safety relief valves of the automatic reseating type identified with the HV symbol, and set to relieve at or below the maximum allowable working pressure of the boiler.

(c) When more than one safety relief valve is used on either hot water heating or hot water supply boilers, the additional valves shall be officially rated and may have a set pressure within a range not to exceed 6 psi (42 kPa), above the maximum allowable working pressure of the boiler up to and including 60 psi (414 kPa), and 5% for those having a maximum allowable working pressure exceeding 60 psi (414 kPa).

(*d*) No safety relief valve shall be smaller than NPS $^{3}/_{4}$ (DN 20) nor larger than NPS $^{4}/_{2}$ (DN 115) except that boilers having a heat input not greater than 15,000 Btu/hr (4.4 kW) may be equipped with a rated safety relief valve of NPS $^{1}/_{2}$ (DN 15).

(e) The required steam relieving capacity, in pounds per hour, of the pressure relieving device or devices on a boiler shall be the greater of that determined by dividing the maximum output in Btu at the boiler nozzle obtained by the firing of any fuel for which the unit is installed by 1000, or shall be determined on the basis of pounds of steam generated per hour per square foot of boiler heating surface as given in Table HG-400.1. For cast iron boilers constructed to the requirements of Part HC, the minimum valve capacity shall be determined by the maximum output method. In many cases a greater relieving capacity of valves

FROM

EXCERPTS

ASME CODE

(f) When operating conditions are changed, or additional boiler heating surface is installed, the valve capacity shall be increased, if necessary, to meet the new conditions and shall be in accordance with HG-400.2(g). The additional valves required, on account of changed conditions, may be installed on the outlet piping provided there is no intervening valve.

(g) Safety relief valve capacity for each boiler with a single safety relief valve shall be such that, with the fuel burning equipment installed and operated at maximum capacity, the pressure cannot rise more than 10% above the maximum allowable working pressure. When more than one safety relief valve is used, the overpressure shall be limited to 10% above the set pressure of the highest set valve allowed by HG-400.2(a).

HG-400.3 Safety and Safety Relief Valves for Tanks and Heat Exchangers

(a) Steam to Hot Water Supply. When a hot water supply is heated indirectly by steam in a coil or pipe within the service limitations set forth in HG-101, the pressure of the steam used shall not exceed the safe working pressure of the hot water tank, and a safety relief valve at least NPS 1 (DN 25), set to relieve at or below the maximum allowable working pressure of the tank, shall be applied to the tank.

(b) High Temperature Water to Water Heat Exchanger.¹ When high temperature water is circulated through the coils or tubes of a heat exchanger to warm water for space heating or hot water supply, within the service limitations set forth in HG-101, the heat exchanger shall be equipped with one or more officially rated safety relief valves that are identified with the V or HV Symbol, set to relieve at or below the maximum allowable working pressure of the heat exchanger, and of sufficient rated capacity to prevent the heat exchanger pressure from rising more than 10% above the maximum allowable working pressure of the vessel.

(c) High Temperature Water to Steam Heat Exchanger.¹ When high temperature water is circulated through the coils or tubes of a heat exchanger to generate low pressure steam, within the service limitations set forth in HG-101. the heat exchanger shall be equipped with one or more officially rated safety valves that are identified with the V or HV Symbol, set to relieve at a pressure not to exceed 15 psi (103 kPa), and of sufficient rated capacity to prevent the heat exchanger pressure from rising more than 5 psi (35 kPa) above the maximum allowable working pressure of the vessel. For heat exchangers requiring steam pressures greater than 15 psi (103 kPa), refer to Section I or Section VIII, Division 1.

MINIMUM REQUIREMENTS FOR SAFETY **HG-401** AND SAFETY RELIEF VALVES

HG-401.1 Mechanical Requirements

(a) The inlet opening shall have an inside diameter approximately equal to, or greater than, the seat diameter. In no case shall the maximum opening through any part of the valve be less than 1/4 in. (6 mm) in diameter or its equivalent area.

(b) Safety relief valves officially rated as to capacity shall have pop action when tested by steam.

(c) O-rings or other packing devices when used on the stems of safety relief valves shall be so arranged as not to affect their operation or capacity.

(d) The design shall incorporate guiding arrangements necessary to insure consistent operation and tightness. Excessive lengths of guiding surfaces should be avoided. Bottom guided designs are not permitted on safety relief valves.

(e) Safety valves shall have a controlled blowdown of 2 psi to 4 psi (13.8 kPa to 28 kPa) and this blowdown need not be adjustable.

(f) Safety valves shall be spring loaded. The spring shall be designed so that the full lift spring compression shall be no greater than 80% of the nominal solid deflection. The permanent set of the spring (defined as the difference between the free height and height measured 10 min after the spring has been compressed solid three additional times after presetting at room temperature) shall not exceed 0.5% of the free height.

(g) There shall be a lifting device and a mechanical connection between the lifting device and the disk capable of lifting the disk from the seat a distance of at least 1/16 in. (1.6 mm) with no pressure on the boiler.

(h) A body drain below seat level shall be provided by the Manufacturer for all safety valves and safety relief valves, except that the body drain may be omitted when the valve seat is above the bottom of the inside diameter of the discharge piping. For valves exceeding NPS $2^{1/2}$ (DN 65) the drain hole or holes shall be tapped not less than NPS 3/8 (DN 10). For valves NPS $2^{1/2}$ (DN 65) or smaller, the drain hole shall not be less than 1/4 in. (6 mm) in diameter. Body drain connections shall not be plugged during or after field installation. In safety relief valves of the diaphragm type, the space above the diaphragm shall be vented to prevent a buildup of pressure above the diaphragm. Safety relief valves of the diaphragm type shall be so designed that failure or deterioration of the diaphragm material will not impair the ability of the valve to relieve at the rated capacity.

(i) In the design of the body of the valve consideration shall be given to minimizing the effects of water deposits.

(*j*) Valves shall be provided with wrenching surfaces to allow for normal installation without damaging operating parts.

(k) The set pressure tolerances plus or minus, of safety valves shall not exceed 2 psi (13.8 kPa), and for safety relief

¹Suggested installation practices for the secondary side of heat exchangers.

valves shall not exceed 3 psi (20.6 kPa) for pressures up to and including 60 psig (414 kPa) and 5% for pressures above 60 psig (414 kPa).

(1) Safety valves shall be arranged so that they cannot be reset to relieve a higher pressure than the maximum allowable working pressure of the boiler.

HG-401.2 Material Selection

(a) Cast iron seats and disks are not permitted.

(b) Adjacent sliding surfaces such as guides and disks shall both be of corrosion resistant material.

(c) Springs of corrosion resistant material or having a corrosion resistant coating are required.

(d) Material for seats and disks should be such as to provide a reasonable degree of resistance to steam cutting.

(e) Material for valve bodies and bonnets or their corresponding metallic pressure containing parts shall be listed in Section II, except that in cases where manufacturer desires to make use of materials other than those listed in Section II, he shall establish and maintain specifications requiring equivalent control of chemical and physical properties and quality.

(f) Synthetic disk inserts of O-ring or other types if used shall be compatible with the maximum design temperature established for the valve.

(g) No materials liable to fail due to deterioration or vulcanization when subjected to saturated steam temperature corresponding to capacity test pressure shall be used.

HG-401.3 Manufacture and Inspection

(a) A Manufacturer shall demonstrate to the satisfaction of an ASME designee that his manufacturing, production, and testing facilities and quality control procedures will insure close agreement between the performance of random production samples and the performance of those valves submitted for capacity certification.

(b) Manufacturing, inspection, and test operations including capacity are subject to inspections at any time by an ASME designee.

(c) A Manufacturer may be granted permission to apply the HV Code Symbol to production pressure relief valves capacity certified in accordance with HG-402.3 provided the following tests are successfully completed. This permission shall expire on the fifth anniversary of the date it is initially granted. The permission may be extended for 5 year periods if the following tests are successfully repeated within the 6 month period before expiration.

(1) Two sample production pressure relief values of a size and capacity within the capability of an ASME accepted laboratory shall be selected by an ASME designee.

(2) Operational and capacity tests shall be conducted in the presence of an ASME designee at an ASME accepted laboratory. The valve Manufacturer shall be notified of the time of the test and may have representatives present to witness the test.

(3) Should any valve fail to relieve at or above its certified capacity or should it fail to meet performance requirements of this Section, the test shall be repeated at the rate of two replacement valves, selected in accordance with HG-401.3(c)(1), for each valve that failed.

(4) Failure of any of the replacement valves to meet the capacity or the performance requirements of this Section shall be cause for revocation within 60 days of the authorization to use the Code Symbol on that particular type of valve. During this period, the Manufacturer shall demonstrate the cause of such deficiency and the action taken to guard against future occurrence, and the requirements of HG-401.3(c) above shall apply.

(d) Safety valves shall be sealed in a manner to prevent the valve from being taken apart without breaking the seal. Safety relief valves shall be set and sealed so that they cannot be reset without breaking the seal.

HG-401.4 Manufacturer's Testing

(a) Every safety valve shall be tested to demonstrate its popping point, blowdown, and tightness. Every safety relief valve shall be tested to demonstrate its opening point and tightness. Safety valves shall be tested on steam or air and safety relief valves on water, steam, or air. When the blowdown is nonadjustable, the blowdown test may be performed on a sampling basis.

(b) A Manufacturer shall have a well-established program for the application, calibration, and maintenance of test gages.

*(c)*Testing time on safety valves shall be sufficient, depending on size and design, to insure that test results are repeatable and representative of field performance.

(d) Test fixtures and test drums shall be of adequate size and capacity to assure representative pop action and accuracy of blowdown adjustment.

(e) A tightness test shall be conducted at maximum expected operating pressure, but not at a pressure exceeding the reseating pressure of the valve.

HG-401.5 Design Requirements. At the time of the submission of valves for capacity certification, or testing in accordance with this Section, the ASME Designee has the authority to review the design for conformity with the requirements of this Section, and to reject or require modification of designs which do not conform, prior to capacity testing.

SPENCE

EXCERPTS FROM ASME CODE

HG402 DISCHARGE CAPACITIES OF SAFETY AND SAFETY RELIEF VALVES

HG-402

A99 **HG-402.1 Valve Markings.** Each safety or safety relief valve shall be plainly marked with the required data by the Manufacturer in such a way that the markings will not be obliterated in service. The markings shall be stamped, etched, impressed, or cast on the valve or on a nameplate, which shall be securely fastened to the valve.

(a) The markings shall include the following:

(1) the name or an acceptable abbreviation of the Manufacturer;

(2) Manufacturer's design or type number;

(3) NPS size _____ in. (the nominal pipe size of the valve inlet);

(4) set pressure ____ psi;

(5) capacity ____ lb/hr, or capacity ____ Btu/hr in accordance with HG-402.7(a);

(6) year built or, alternatively, a coding may be marked on the valves such that the valve Manufacturer can identify the year the valve was assembled and tested; and

(7) ASME Symbol as show in Fig. HG-402.

(b) Nameplates of safety or safety-relief valves may be marked solely in metric units under the following conditions:

(1) The pressure-relief device will be installed in a location where metric units are required or accepted by local authorities, if any.

(2) Metric units shall be those required by the user when not mandated by enforcement authorities.

(3) The Manufacturer's quality control system shall provide the conversion from U.S. customary units to the metric units that will be marked on the nameplate.

HG-402.2 Authorization to Use ASME Stamp

Each safety valve to which the Code Symbol (Fig. HG-402) is to be applied shall be produced by a Manufacturer and/or Assembler who is in possession of a valid Certificate of Authorization (See HG-540)

HG-402.3 Determination of Capacity to Be Stamped

on Valves. The Manufacturer of the valves that are to be

stamped with the Code symbol shall submit valves for

testing to a place where adequate equipment and personnel

98

EXCERPTS FROM ASME CODE

	┠	-	V	
4		_		لى

FIG. HG-402 OFFICIAL SYMBOL FOR STAMP TO DENOTE THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS' STANDARD

are available to conduct pressure and relieving-capacity tests which shall be made in the presence of and certified by an authorized observer. The place, personnel, and authorized observer shall be approved by the Boiler and Pressure Vessel Committee. The valves shall be tested in one of the following three methods:

(a) Coefficient Method. Tests shall be made to determine the lift, popping, and blowdown pressures, and the capacity of at least three valves each of three representative sizes (a total of nine valves). Each valve of a given size shall be set at a different pressure. However, safety valves for steam boilers shall have all nine valves set at 15 psig (103 kPa). A coefficient shall be established for each test as follows:

 $K_{P} = \frac{\text{Actual steam flow}}{\text{Theoretical steam flow}} = \text{Coefficient of discharge}$

The average of the coefficients K_D of the nine tests required shall be multiplied by 0.90, and this product shall be taken as the coefficient K of that design. The stamped capacity of all sizes and pressures shall not exceed the value determined from the following formulas:

For 45 deg. seat,

$$W = 51.5 \pi DLP \ge 0.707 K$$

For flat seat,

 $W = 51.5 \pi DLPK$

For nozzle,

W = 51.5 APK

Where

- W = weight of steam/hr, lb.
- D = seat diameter, in.
- L = lift, in.
- P = (1.10 x set pressure + 14.7)psia for hot water applications or
 - = (5.0 psi + 15 psi set + 14.7) psia for steam boilers
- K = coefficient of discharge for the design
- A =nozzle-throat area, sq in.

NOTE: The maximum and minimum coefficient determined by the tests of a valve design shall not vary more than +-5% from the average. If one or more tests are outside the acceptable limits, one valve of the Manufacturer's choice shall be replaced with another valve of the same size and pressure setting or by a modification of the original valve. Following this test a new average coefficient shall be calculated, excluding the replaced the valve test. If one or more tests are now outside the acceptable limits, as determined by the new average coefficient, a valve of the Manufacturer's choice must be replaced by two valves of the same size and pressure as the rejected valve. A new average coefficient, including the replacement valves, shall be calculated. If any valve, excluding the two replaced valves, now falls outside the acceptable limits, the tests shall be considered unsatisfactory.

Reprinted from ASME 1998 BPVC Section I, IV, and VIII-1 by permission of The American Society of Mechanical Engineers. All rights reserved.

(b) Slope Method. If a Manufacturer wishes to apply the Code Symbol to a design of pressure relief valves, four valves of each combination of pipe and orifice size shall be tested. These four valves shall be set at pressures that cover the approximate range of pressures for which the valve will be used, or that cover the range available at the certified test facility that shall conduct the tests. The capacities shall be based on these four tests as follows.

(1) The slope (W/P) of the actual measured capacity versus the flow pressure for each test point shall be calculated and averaged:

slope = W/P = <u>measured capacity</u> absolute flow pressure, psia

All values derived from the testing must fall within $\pm 5\%$ of the average value:

minimum slope = 0.95 x average slope

maximum slope = 1.05 x average slope

If the values derived from the testing do not fall between the minimum and maximum slope values, the Authorized Observer shall require that additional valves be tested at the rate of two for each valve beyond the maximum and minimum values with a limit of four additional valves.

(2) The relieving capacity to be stamped on the valve shall not exceed 90% of the average slope times the absolute accumulation pressure:

rated slope = 0.90 x average slope

stamped capacity \leq rated slope x (1.10 x set pressure + 14.7) psia for hot water applications

(c)Three-Valve Method. If a Manufacturer wishes to apply the Code Symbol to steam safety valves or safety relief valves of one or more sizes of a design set at one pressure, he shall submit three valves of each size of each design set at one pressure for testing and the stamped capacity of each size shall not exceed 90% of the average capacity of the three valves tested.

NOTE: The discharge capacity as determined by the test of each valve tested shall not vary by more than +-5% of the average capacity of the three valves tested. If one of the three valve tests falls outside of the limits, it may be replaced by two valves and a new average calculated based on all four valves, excluding the replaced valve.

HG-402.4 Pressures at Which Capacity Tests Shall Be Conducted. Safety valves for steam boilers shall be tested for capacity at 5 psi (35 kPa) over the set pressure for which the valve is set to operate. Capacity certification tests of safety relief valves for hot water heating and hot water supply boilers shall be conducted at 110% of the pressure for which the valve is set to operate. **HG-402.5 Opening Tests of Temperature and Pressure Safety Relief Valves.** For the purpose of determining the set (opening) pressure, the test medium shall be room temperature water. The actual set pressure is defined as the pressure at the valve inlet when the flow rate through the valve is 40 cc/min. Capacity tests shall be conducted with steam (see HG-402.7) at a pressure 10% above the actual water set pressure. For production capacity check tests, the rated capacity shall be based on the actual water set pressure.

HG-402.6 Capacity Tests of Temperature and Pressure Safety Relief Valves. For the purpose of determining the capacity of temperature and pressure safety relief valves, dummy elements of the same size and shape as the regularly applied thermal element shall be substituted and the relieving capacity shall be based on the pressure element only. Valves selected to meet the requirements of production testing, HG-401.3, shall have their temperature elements deactivated by the Manufacturer prior to or at the time of capacity testing.

HG-402.7 Fluid Medium for Capacity Tests. The tests shall be made with dry saturated steam. For test purposes the limits of 98% minimum quality and 20°F (11°C) maximum superheat shall apply. Correction from within these limits may be made to the dry saturated condition. The relieving capacity shall be measured by condensing the steam or with a calibrated steam flowmeter.

(a) To determine the discharge capacity of safety relief valves in terms of Btu, the relieving capacity in pounds for steam per hour W is multiplied by 1000.

HG-402.8 Where and by Whom Capacity Tests Shall be Conducted

(a) Tests shall be conducted at a place where the testing facilities, methods, procedures, and person supervising the tests (Authorized Observer) meet the applicable requirements of ASME PTC 25-1994. The tests shall be made under the supervision of and certified by an Authorized Observer. The testing facilities, methods, procedures, and qualifications of the Authorized Observer shall be subject to the acceptance of ASME on recommendation of an ASME Designee. Acceptance of the testing facility is subject to review within each 5 year period.

(b) Capacity test data reports for each valve model, type, and size, signed by the Manufacturer and the Authorized Observer witnessing the tests, shall be submitted to the ASME Designee for review and acceptance.²

NOTE: When changes are made in the design, capacity certification tests shall be repeated.

²Valve capacities are published in "Pressure Relief Device Certifications." This publication may be obtained from The National Board of Boiler and Pressure Vessel Inspectors, 1055 Crupper Avenue, Columbus, OH 43229

HG-402.9 Test Record Data Sheet. A data sheet for each valve shall be filled out and signed by the authorized observer witnessing the test. Such data sheet will be the manufacturer's authority to build and stamp valves of corresponding design and construction. When changes are made in the design of a safety or safety relief valve in such a manner as to affect the flow path, lift, or performance characteristics of the valve, new tests in accordance with this Section shall be performed.

NOTE: See HG-512 for safety and safety relief valve accumulation test requirements. See HG-701 for safety and safety relief valve installation requirements.

HG-403 HEATING SURFACE

The heating surface shall be computed as follows.

(a) Heating surface, as part of a circulating system in contact on one side with water or wet steam being heated and on the other side with gas or refractory being cooled, shall be measured on the side receiving heat.

(b) Boiler heating surface and other equivalent surface outside the furnace shall be measured circumferentially plus any extended surface.

(c) Waterwall heating surface and other equivalent surface within the furnace shall be measured as the projected tube area (diameter x length) plus any extended surface on the furnace side. In computing the heating surface for this purpose, only the tubes, fireboxes, shells, tubesheets, and the projected area of headers need be considered, except that for vertical firetube steam boilers, only that portion of the tube surface up to the middle of the gage glass is to be computed.

HG-405 TEMPERATURE AND PRESSURE SAFETY RELIEF VALVES

The thermal sensing elements for temperature and pressure safety relief valves shall be so designed and constructed that they will not fail in any manner which could obstruct flow passages or reduce capacities of the valves when the elements are subjected to saturated steam temperature corresponding to capacity test pressure. Temperature and pressure safety relief valves incorporating these elements shall comply with a nationally recognized standard.³

HG-512 SAFETY AND SAFETY RELIEF VALVE ACCUMULATION TESTS

If the safety valve or safety relief valve capacity cannot be computed or if it is desirable to prove the computations, it may be checked in any one of the following ways, and if found insufficient, additional capacity shall be provided:

(a) by making an accumulation test, that is, by shutting off all discharge outlets from the boiler and forcing the fires to the maximum, the safety valve equipment shall be sufficient to prevent an excess pressure beyond the specified in HG-400.1(f) and HG-400.2(f);

(b) by measuring the maximum amount of fuel that can be burned, and computing the corresponding evaporative capacity upon the basis the heating value of the fuel. (See B-100, B-101, and B-102.)

SECTION IV

³An example of a nationally recognized standard is ANSI Z21.22, Relief Valves and Automatic Gas Shutoff Devices for Hot Water Supply Systems.

ARTICLE 7 INSTALLATION REQUIREMENTS

HG-701 MOUNTING SAFETY AND SAFETY RELIEF VALVES

HG-701.1 Permissible Mounting. Safety valves and safety relief valves shall be located in the top or side¹ of the boiler. They shall be connected directly to a tapped or flanged opening in the boiler, to a fitting connected to the boiler by a short nipple, to a Y-base, or to a valveless header connecting steam or water outlets on the same boiler. Coil or header type boilers shall have the safety valve or safety relief valve located on the steam or hot water outlet end. Safety valves and safety relief valves shall be installed with their spindles vertical. The opening or connection between the boiler and any safety valve or safety relief valve shall have at least the area of the valve inlet.

HG-701.2 Requirements for Common Connections for Two or More Valves

(a) When a boiler is fitted with two or more safety valves on one connection, this connection shall have a crosssectional area not less than the combined areas of inlet connections of all the safety valves with which it connects.

(b) When a Y-base is used, the inlet area shall be not less than the combined outlet areas. When the size of the boiler requires a safety valve or safety relief valve larger than $4^{1/2}$ in. (115 mm) in diameter, two or more valves having the required combined capacity shall be used. When two or more valves are used on a boiler, they may be single, directly attached, or mounted on a Y-base.

HG-701.3 Threaded Connections. A threaded connection may be used for attaching a valve.

HG-701.4 Prohibited Mountings. Safety and safety relief valves shall not be connected to an internal pipe in the boiler.

HG-701.5 Use of Shutoff Valves Prohibited. No shutoff of any description shall be placed between the safety or safety relief valve and the boiler, or on discharge pipes between such valves and the atmosphere.

HG-701.6 SAFETY AND SAFETY RELIEF VALVE DISCHARGE PIPING

(a) A discharge pipe shall be used. Its internal crosssectional area shall be not less than the full area of the valve outlet or of the total of the valve outlets discharging thereinto and shall be as short and straight as possible and so arranged as to avoid undue stress on the valve or valves. A union may be installed in the discharge piping close to the valve outlet. When an elbow is placed on a safety or safety relief valve discharge pipe, it shall be located close to the valve outlet downstream of the union.

(b) The discharge from safety or safety relief valves shall be so arranged that there will be no danger of scalding attendants. The safety or safety relief valve discharge shall be piped away from the boiler to the point of discharge, and there shall be provisions made for properly draining the piping. The size and arrangement of discharge piping shall be independent of other discharge piping and shall be such that any pressure that may exist or develop will not reduce the relieving capacity of the relieving devices below that required to protect the boiler.

HG-701.7 Temperature and Pressure Safety Relief Valves. Hot water heating or supply boilers limited to a water temperature of 210°F (99°C) may have one or more officially rated temperature and pressure safety relief valves installed. The requirements of HG-701.1 through HG-701.6 shall be met, except as follows:

(a) A Y-type fitting shall not be used.

(b) If additional valves are used they shall be temperature and pressure safety relief valves.

(c) When the temperature and pressure safety relief valve is mounted directly on the boiler with no more than 4 in. (102 mm) maximum interconnecting piping, the valve may be installed in the horizontal position with the outlet pointed down.

[']The top or side of the boiler shall mean the highest practicable part of the boiler proper but in no case shall the safety valve be located below the normal operating level and in no case shall the safety relief valve be located below the lowest permissible water level.

ARTICLE 8 INSTALLATION REQUIREMENTS

HLW-800 SAFETY RELIEF VALVES

HLW-800.1 Safety Relief Valve Requirements for Water Heaters

(a) Each water heater shall have at least one officially rated temperature and pressure safety relief valve or at least one officially rated safety relief valve. The valve(s) shall be marked with the ASME Code Symbol V or HV to evidence compliance with the construction and rating requirements of the ASME Boiler and Pressure Vessel Code. No safety relief valve shall be smaller than NPS ³/₄ (DN 20).

(b) The pressure setting shall be less than or equal to the maximum allowable working pressure of the water heater. However, if any of the other components in the hot water supply system (such as valves, pumps, expansion or storage tanks, or piping) have a lesser working pressure rating than the water heater, the pressure setting for the relief valve(s) shall be based upon the component with the lowest maximum allowable working pressure rating. If more than one safety relief valve is used, the additional valve(s) may be set within a range not to exceed 10% over the set pressure of the first valve.

(c) The required relieving capacity in Btu/hr of the safety relief valve shall not be less than the maximum allowable input unless the water heater is marked with the rated burner input capacity of the water heater on the casing in a readily visible location, in which case the rated burner input capacity may be used on a basis for sizing the safety relief valves. The relieving capacity for electric water heaters shall be 3500 Btu/hr (1.0 kW) per kW of input. In every case, the following requirements shall be met. Safety relief valve capacity for each water heater shall be such that with the fuel burning equipment installed and operated at maximum capacity the pressure cannot rise more than 10% of maximum allowable working pressures.

(d) If operating conditions are changed or additional heater heating surface is installed, the safety relief valve capacity shall be increased, if necessary, to meet the new conditions and shall be in accordance with the above provisions. In no case shall the increased input capacity exceed the maximum allowable input capacity. The additional valves required, on account of changed conditions, may be installed on the outlet piping provided there is no intervening valve.

HLW-801 MOUNTING SAFETY RELIEF VALVES

HLW-801.1 Installation. Safety relief values shall be installed by either the installer or the manufacturer before a water heater is placed in operation.

HLW-801.2 Permissible Mountings. Safety relief valves shall be connected to the top of water heaters or directly to a tapped or flanged opening in the water heater, to a fitting connected to the water heater by short nipple, to a Y-base,

or to a valveless header connecting water outlets on the same heater. Safety relief valves shall be installed with their spindles upright and vertical with no horizontal connecting pipe, except that, when the safety relief valve is mounted directly on the water heater vessel with no more than 4 in. (102 mm) maximum interconnecting piping, the valve may be installed in the horizontal position with the outlet pointed down. The center line of the safety relief valve connection shall be no lower than 4 in. (102 mm) from the top of the shell. No piping or fitting used to mount the safety relief valve shall be of a nominal pipe size less than that of the valve inlet.

HLW-801.3 Requirements for Common Connection for Two or More Valves

(a) When a water heater is fitted with two or more safety relief valves on one connection, this connection shall have a cross-sectional area not less than the combined areas of inlet connections of all the safety relief valves with which it connects.

(b) When a Y-base is used, the inlet area shall be not less than the combined outlet areas. When the size of the water heater requires a safety relief valve larger than $4^{1/2}$ in. (114 mm) diameter, two or more valves having the required combined capacity shall be used. When two or more valves are used on a water heater, they may be single, directly attached, or mounted on a Y-base.

HLW-801.4 Threaded Connections. A threaded connection may be used for attaching a valve.

HLW-801.5 Prohibited Mounting. Safety relief valves shall not be connected to an internal pipe in the water heater or a cold water feed line connected to the water heater.

HLW-801.6 Use of Shutoff Valves Prohibited. No shutoff of any description shall be placed between the safety relief valve and the water heater, or on discharge pipes between such valves and the atmosphere.

HLW-801.7 Safety Relief Valve Discharge Piping

(a) When a discharge pipe is used, its internal crosssectional area shall be not less than the full area of the valve outlet or of the total of the valve outlets discharging thereinto, and shall be as short and straight as possible and so arranged as to avoid undue stress on the valve or valves. When an elbow is placed on a safety relief discharge pipe, it shall be located close to the valve outlet.

(b) The discharge from safety relief valves shall be so arranged that there will be no danger of scaling attendants. When the safety relief valve discharge is piped away from the water heater to the point of discharge, there shall be provisions for properly draining the piping and valve body. The size and arrangement of discharge piping shall be such that any pressure that may exist or develop will not reduce the relieving capacity of the relieving devices below that required to protect the water heater.

Reprinted from ASME 1998 BPVC Section I, IV, and VIII-1 by permission of The American Society of Mechanical Engineers. All rights reserved.

PENCE

- 100 -

EXCERPTS FROM ASNE CODE Section VIII

Reprinted from ASME 1998 BPVC Section I, IV, and VIII-1 by permission of The American Society of Mechanical Engineers. All rights reserved.

NOTES:

SPENCE

PRESSURE RELIEF DEVICES

98 UG-125 GENERAL

(a) All pressure vessels within the Scope of this Division, irrespective of size or pressure, shall be provided with pressure relief devices in accordance with the requirements of UG-125 through UG-137. It is the responsibility of the user to ensure that the required pressure relief devices are properly installed prior to initial operation. These pressure relief devices need not be supplied by the vessel Manufacturer. Unless otherwise defined in this Division, the definitions relating to pressure relief devices in Section 2 of ASME PTC 25 shall apply.

(b) An unfired steam boiler, as defined in U-1(g), shall be equipped with pressure relief devices required by Section I insofar as they are applicable to the service of the particular installation

(c) All pressure vessels other than unfired steam boilers shall be protected by a pressure relief device that shall prevent the pressure from rising more than 10% or 3psi, whichever is greater, above the maximum allowable working pressure except as permitted in (1) and (2) below. (See UG-134 for pressure settings.)

(1) When multiple pressure relief devices are provided and set in accordance with UG-134(a), they shall prevent the pressure from rising more than 16% or 4 psi, whichever is greater, above the maximum allowable working pressure.

(2) Where an additional hazard can be created by exposure of a pressure vessel to fire or other unexpected sources of external heat, supplemental pressure relief devices shall be installed to protect against excessive pressure. Such supplemental pressure relief devices shall be capable of preventing the pressure from rising more than 21% above the maximum allowable working pressure. The same pressure relief devices may be used to satisfy the capacity requirements of (c) or (c)(1) above and this paragraph provided the pressure setting requirements of UG-134(a) are met.

(3) Pressure relief devices, intended primarily for protection against exposure of a pressure vessel to fire or other unexpected sources of external heat installed on vessels having no permanent supply connection and used for storage at ambient temperatures of nonrefrigerated liquefied compressed gases,⁴¹ are excluded from the requirements of (c)(1) and (c)(2) above, provided:

(a) the pressure relief devices are capable of preventing the pressure from rising more than 20% above the maximum allowable working pressure of the vessels;

(b) the set pressure marked on these devices shall not exceed the maximum allowable working pressure of the vessels;

(c) the vessels have sufficient ullage to avoid a liquid full condition;

(d) the maximum allowable working pressure of the vessels on which these pressure relief devices are installed is greater than the vapor pressure of the stored liquefied compressed gas at the maximum anticipated temperature⁴² that the gas will reach under atmospheric conditions; and

(e) pressure relief valves used to satisfy these provisions also comply with the requirements of UG-129(a)(5), UG-131(c)(2), and UG-134(d)(2).

(d) Pressure relief devices shall be constructed, located, and installed so that they are readily accessible for inspection, replacement, and repair so that they cannot be readily rendered inoperative (see Appendix M), and should be selected on the basis of their intended service.

(e) Pressure relief valves or nonreclosing pressure relief devices⁴³ may be used to protect against overpressure. Nonreclosing pressure relief devices may be used either alone or, if applicable, in combination with pressure relief valves on vessels.

NOTE: Use of nonclosing pressure relief devices of some types may be advisable on vessels containing substances that may render a pressure relief valve inoperative, where a loss of valuable material by leakage should be avoided, or where contamination of the atmosphere by leakage of noxious fluids must be avoided. The use of rupture disk devices may also be advisable when very rapid rates of pressure rise may be encountered.

(f) Vessels that are to operate completely filled with liquid shall be equipped with pressure relief devices designed for liquid service, unless otherwise protected against overpressure.

(g) The pressure relief devices required in (a) above need not be installed directly on a pressure vessel when the source of pressure is external to the vessel and is under such positive control that the pressure in the vessel cannot exceed the maximum allowable working pressure at the operating temperature except as permitted in (c) above (see UG-98).

NOTE: Pressure reducing valves and similar mechanical or electrical control instruments, except for pilot operated pressure relief valves as permitted in UG-126(b), are not considered as sufficiently positive in action to prevent excess pressures from being developed.

(h) Pressure relief valves for steam service shall meet the requirements of UG-131(b).

UG-126 PRESSURE RELIEF VALVES⁴⁴

(a) Safety, safety relief, and relief valves shall be of the direct spring loaded type.

excerpts from ASME CODE

⁴¹For the purpose of these rules, gases are considered to be substances having a vapor pressure greater than 40 psia at 100°F.

 $^{^{\}scriptscriptstyle 42}$ Normally this temperature should not be less than 115°F.

⁴³A *pressure relief valve* is a pressure relief device which is designed to reclose and prevent the further flow of fluid after normal conditions have been restored. A *nonreclosing pressure relief device* is a pressure relief device designed to remain open after operation.

SECTION VIII

A99

(b) Pilot operated pressure relief valves may be used, provided that the pilot is self-actuated and the main valve will open automatically at not over the set pressure and will discharge its full rated capacity if some essential part of the pilot should fail.

(c) The spring in a pressure relief valve shall not be set for any pressure more than 5% above or below that for which the valve is marked, unless the setting is within the spring design range established by the valve Manufacturer or is determined to be acceptable to the manufacturer. The initial adjustment shall be performed by the Manufacturer, his authorized representative, or an Assembler, and a valve data tag shall be provided that identifies the set pressure capacity and date. The valve shall be sealed with a seal identifying the Manufacturer, his authorized representative, or the Assembler performing the adjustment.

(*d*) The set pressure tolerances, plus or minus, of pressure relief valves shall not exceed 2 psi (13.8 kPa) for pressures up to and including 70 psi (483 kPa) and 3% for pressures above 70 psi (483 kPa).

UG-127 NONRECLOSING PRESSURE RELIEF DEVICES

(a) Rupture Disk Devices⁴⁵

(1) General. Every rupture disk shall have a marked burst pressure established by rules of UG-137(d)(3) within a manufacturing design range⁴⁶ at a specified disk temperature⁴⁷ and shall be marked with a lot⁴⁸ number. The burst pressure tolerance at the specified disk temperature shall not exceed $\pm 2\%$ psi (± 13.8 kPa) for marked burst pressure up to and including 40 psi (276 kPa) and $\pm 5\%$ for marked burst pressure above 40 psi (276 kPa).

(2) Relieving Capacity. The rated flow capacity of a pressure relief system which uses a rupture disk device as

⁴⁵A *rupture disk device* is a nonreclosing pressure relief device actuated by inlet static pressure and designed to function by the bursting of a pressure containing disk. A *rupture disk* is the pressure containing and pressure sensitive element of a *rupture disk device*. Rupture disks may be designed in several configurations, such a plain flat, prebulged, or reverse buckling. A *rupture disk holder* is the structure which encloses and clamps the rupture disk in position.

the sole relief device shall be determined by a value calculated under the requirements of (a) using a coefficient of discharge or (b) using flow resistances below.

(a) When the rupture disk device discharges directly to atmosphere and

(1) is installed within eight pipe diameters from the vessel nozzle entry; and

(2) with a length of discharge pipe not greater than five pipe diameters from the rupture disk device; and

(3) the nominal diameters of the inlet and discharge piping are equal to or greater than the stamped NPS designator of the device,

the calculated relieving capacity of a pressure relief system shall not exceed a value based on the applicable theoretical flow equation [see UG-131(e)(2) and Appendix 11] for the various media multiplied by a coefficient of discharge *K* equal to 0.62. The area A in the theoretical flow equation shall be the minimum net flow area⁴⁹ as specified by the rupture disk device Manufacturer.

(b) The calculated capacity of any pressure relief system may be determined by analyzing the total system resistance to flow. This analysis shall take into consideration the flow resistance of the rupture disk device, piping and piping components including the exit nozzle on the vessels, elbows, tees, reducers, and valves. The calculation shall be made using accepted engineering practices for determining fluid flow through piping systems. This calculated relieving capacity shall be multiplied by a factor of 0.90 or less to allow for uncertainties inherent with this method. The certified flow resistance⁵⁰ K_R for the rupture disk device, expressed as the velocity head loss, shall be determined in accordance with UG-131(k) through (r).

(3) Application of Rupture Disks

(a) A rupture disk device may be used as the sole pressure relieving device on a vessel.

NOTE: When rupture disk devices are used, it is recommended that the design pressure of the vessel be sufficiently above the intended operating pressure to provide sufficient margin between operating pressure and rupture disk bursting pressure to prevent premature failure of the rupture disk due to fatigue or creep.

Application of rupture disk devices to liquid service should be carefully evaluated to assure that the design of the rupture disk device and the dynamic energy of the system on which it is installed will result in sufficient opening of the rupture disk.

(b) A rupture disk device may be installed between a pressure relief valve51 and the vessel provided:

Reprinted from ASME 1998 BPVC Section I, IV, and VIII-1 by permission of The American Society of Mechanical Engineers. All rights reserved.

[&]quot;A safety valve is a pressure relief valve actuated by inlet static pressure and characterized by rapid opening or pop action. A *relief valve* is a pressure relief valve actuated by inlet static pressure which opens in proportion to the increase in pressure over the opening pressure. A *safety relief valve* is a pressure relief valve characterized by rapid opening or pop action, or by opening in proportion to the increase in pressure over the opening pressure, depending on application. A *pilot operated pressure relief valve* is a pressure relief valve in which the major relieving device is combined with an is controlled by a self-actuated auxiliary pressure relief valve.

⁴⁰The *manufacturing design range* is a range of pressure within which the marked burst pressure must fall to be acceptable for a particular requirement as agreed upon between the rupture disk Manufacturer and the user or his agent.

⁴⁷The specified disk temperature supplied to the rupture disk Manufacturer shall be the temperature of the disk when the disk is expected to burst.

⁴⁸A *lot of rupture disks* is those disks manufactured of a material at the same time, of the same size, thickness, type, heat, and manufacturing process including heat treatment.

⁴⁹The *minimum net flow area* is the calculated net area after a complete burst of the disk with appropriate allowance for any structural members which may reduce the net flow area through the rupture disk device. The net flow area for sizing purposes shall not exceed the nominal pipe size area of the rupture disk device.

⁵⁰The *certified flow resistance* K_R is a dimensionless factor used to calculate the velocity head loss that results from the presence of a rupture disk device in a pressure relief system.

⁵¹Use of a rupture disk device in combination with a pressure relief valve shall be carefully evaluated to ensure that the media being handled and the valve operational characteristics will result in opening of the valve coincident with the bursting of the rupture disk.

(1) the combination of the pressure relief valve and the rupture disk device is ample in capacity to meet the requirements of UG-133(a) and (b);

UG-127

(2) the marked capacity of a pressure relief valve (nozzle type) when installed with a rupture disk device between the inlet of the valve and the vessel shall be multiplied by a factor of 0.90 of the rated relieving capacity of the valve alone, or alternatively, the capacity of such a combination shall be established in accordance with (3) below;

(3) the capacity of the combination of the rupture disk device and the pressure relief valve may be established in accordance with the appropriate paragraphs of UG-132;

(4) the space between a rupture disk device and a pressure relief valve shall be provided with a pressure gage, a try cock, free vent, or suitable telltale indicator. This arrangement permits detection of disk rupture or leakage.⁵²

(5) the opening⁴⁹ provided through the rupture disk, after burst, is sufficient to permit a flow equal to the capacity of the valve [(2) and (3) above], and there is no chance of interference with proper functioning of the valve; but in no case shall this area be less than the area of the inlet of the valve unless the capacity and functioning of the specific combination of rupture disk device and pressure relief valve have been established by test in accordance with UG-132.

(c) A rupture disk device may be installed on the outlet side⁵³ of a pressure relief valve which is opened by direct action of the pressure in the vessel provided:

(1) the pressure relief valve will not fail to open at its proper pressure setting regardless of any back pressure that can accumulate between the pressure relief valve disk and the rupture disk. The space between the pressure relief valve disk and the rupture disk shall be vented or drained to prevent accumulation of pressure, or suitable means shall be provided to ensure that an accumulation of pressure does not affect the proper operation of the pressure relief valve.⁵⁴

(2) the pressure relief valve is ample in capacity to meet the requirements of UG-125(c);

(3) the marked burst pressure of the rupture disk at the specified disk temperature plus any pressure in the outlet piping shall not exceed the design pressure of the outlet portion of the pressure relief valve and any pipe or fitting between the valve and the rupture disk device. However, in no case shall the marked burst pressure of the rupture disk at the specified disk temperature plus any pressure in the outlet piping exceed the maximum allowable working pressure of the vessel or the set pressure of the pressure relief valve.

(4) the opening provided through the rupture disk device after breakage is sufficient to permit a flow equal to the rated capacity of the attached pressure relief valve without exceeding the allowable overpressure;

(5) any piping beyond the rupture disk cannot be obstructed by the rupture disk or fragment;

(6) the system is designed to consider the adverse effects of any leakage through the pressure relief valve or through the outlet side rupture disk device, to ensure system performance and reliability.⁶²

(7) the bonnet of a balancing bellows or diaphragm type pressure relief valve shall be vented to prevent accumulation of pressure in the bonnet.

(b) Breaking Pin Device⁵⁵

(1) Breaking pin devices shall not be used as single devices but only in combination between the pressure relief valve and the vessel.

(2) The space between a breaking pin device and a pressure relief valve shall be provided with a pressure gage, a try cock, a free vent, or suitable telltale indicator. This arrangement permits detection of breaking pin device operation or leakage.

(3) Each breaking pin device shall have a rated pressure and temperature at which the pin will break. The breaking pin shall be identified to a lot number and shall be guaranteed by the Manufacturer to break when the rated pressure, within the following tolerances, is applied to the device:

Rated Pressure, psi			
<u>Minimum</u>	<u>Maximum</u>	<u>Tolerance, Plus or Minus, psi</u>	
30	150	5	
151	275	10	
276	375	15	

(4) The rated pressure of the breaking pin plus the tolerance in psi shall not exceed 105% of the maximum allowable working pressure of the vessel to which it is applied.

Reprinted from ASME 1998 BPVC Section I, IV, and VIII-1 by permission of The American Society of Mechanical Engineers. All rights reserved.

ASME COD

²²Users are warned that a rupture disk will not burst at its design pressure if back pressure builds up in the space between the disk and the pressure relief valve which will occur should leakage develop in the rupture disk due to corrosion or other cause.

⁵³This use of a rupture disk device in series with the pressure relief valve is permitted to minimize the loss by leakage through the valve of valuable or of noxious or otherwise hazardous materials, and where a rupture disk alone or disk located on the inlet side of the valve is impracticable, or to prevent corrosive gases from a common discharge line from reaching the valve internals.

A99 ⁵⁴Users are warned that many types of pressure relief valves will not open at the set pressure if pressure builds up in the space between the pressure relief valve disk and the rupture disk device. A specially designed pressure relief valve such as a diaphragm valve, pilot operated valve, or a valve equipped with a balancing bellows above the disk may be required.

⁵⁵A *breaking pin device* is a nonreclosing pressure relief device actuated by inlet static pressure and designed to function by the breakage of a load-carrying section of a pin which supports a pressure containing member. A *breaking pin* is the load-carrying element of a breaking pin device. A *breaking pin housing* is the structure which encloses the breaking pin mechanism. The material of the housing shall be listed in Section II and be permitted for use in this Division.

⁵⁹The specified temperature supplied to the breaking pin manufacturer shall be the temperature of the breaking pin when an emergency condition exists and the pin is expected to break.

⁶²Some adverse effects resulting from leakage may include obstructing the flow path, corrosion of pressure relief valve components, and undesirable bursts of the outlet side rupture disk.

SECTION VIII

(5) The rated pressure at the specified temperature⁵⁶ shall be verified by breaking two or more sample breaking pins from each lot of the same material and the same size as those to be used. The lot size shall not exceed 25. The test shall be made in a device of the same form and pressure dimensions as that in which the breaking pin is to be used.

(c) Spring Loaded Nonreclosing Pressure Relief Device (1) A spring loaded nonreclosing pressure relief device, pressure actuated by means which permit the spring loaded portion of the device to open at the specified set pressure and remain open until manually reset, may be used provided the design of the spring loaded nonreclosing device is such that if the actuating means fail, the device will achieve full opening at or below its set pressure. Such a device may not be used in combination with any other pressure relief device. The tolerance on opening point shall not exceed $\pm 5\%$.

(2) The calculated capacity rating of the spring loaded nonreclosing pressure relief device shall not exceed a value based on the applicable theoretical formula (see UG-131) for the various media, multiplied by: K = coefficient = 0.62.

The area A (square inches) in the theoretical formula shall be the flow area through the minimum opening of the spring loaded nonreclosing pressure relief device.

(3) In lieu of the method of capacity rating in (2) above, a Manufacturer may have the capacity of a spring loaded nonreclosing pressure relief device design certified in general accordance with the procedures of UG-131, as applicable.

UG-128 LIQUID PRESSURE RELIEF VALVES

Any liquid pressure relief valve used shall be at least NPS $^{1\!/_{2\!2}}$

UG-129 MARKING

(a) Safety, Safety Relief, Relief, Liquid Pressure Relief, and Pilot Operated Pressure Relief Valves. Each safety, safety relief, relief, liquid pressure relief, and pilot operated pressure relief valve NPS $\frac{1}{2}$ (DN 15) and larger shall be plainly marked by the Manufacturer or Assembler with the required data in such a way that the marking will not be obliterated in service. The marking may be placed on the valve or on a plate or plates that satisfy the requirements of UG-119:

(1) the name, or an acceptable abbreviation, of the Manufacturer and the Assembler;

(2) Manufacturer's design or type number;

(3) NPS size ____ (the nominal pipe size of the valve inlet);

(4) set pressure ____ psi, and if applicable per UG-136(d)(4), cold differential test pressure ____ psi.
 (5) certified capacity (as applicable);

FIG. UG-129.1 OFFICIAL SYMBOL FOR STAMP TO DENOTE THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS' STANDARD FOR PRESSURE RELIEF VALVES

(a) lb/hr of saturated steam at an overpressure of 10% or 3 psi (20.6 kPa), whichever is greater for valves certified on steam complying with UG-131(b); or

(b) gal/min of water at 70° F (21°C) at an overpressure of 10% or 3 psi (20.6 kPa), whichever is greater for valves certified on water; or

(c) SCFM [standard cubic feet per minute at 60° F and 14.7 psia (16° C and 101 kPa), or lb/min, of air at an overpressure of 10% or 3 psi (20.6 kPa), whichever is greater. Valves that are capacity certified in accordance with UG-131(c)(2) shall be marked "at 20% overpressure".

(d) In addition to one of the fluids specified above, the Manufacturer may indicate the capacity in other fluids (see Appendix 11).

(6) year built, or alternatively, a coding may be marked on the valve such that the valve Manufacturer or Assembler can identify the year the valve was assembled or tested;

(7) ASME Symbol as shown in Fig. UG-129.1. The pilot of a pilot operated pressure relief valve shall be plainly marked by the Manufacturer or Assembler showing the name of the Manufacturer, the Manufacturer's design or type number, the set pressure in pounds per square inch, and the year built, or alternatively, a coding that the Manufacturer can use to identify the year built.

On valves smaller than NPS 1/2 (DN 15), the markings may be made on a metal tag attached by wire or adhesive meeting the requirements of UG-119 or other means suitable for the service conditions.

(b) Safety and safety relief valves certified for a steam discharging capacity under the provisions of Section I and bearing the official code Symbol Stamp of Section I for safety valves may be used on pressure vessels. The rated capacity in terms of other fluids shall be determined by the method of conversion given in Appendix 11. [See UG-131(h)].

(c) Pressure Relief Valves in Combination With Rupture Disk Devices. Pressure relief valves in combination with rupture disk devices shall be marked with the capacity as established in accordance with UG-127(a)(3)(b)(2) (using 0.90 factor) or the combination capacity factor established by test in accordance with UG-132(a) or (b), in addition to the marking of UG-129(a) and (f) below. The marking may be placed on the pressure relief valve or rupture disk device or on a plate or plates that satisfy the requirements of UG-119. The marking shall include the following:

Reprinted from ASME 1998 BPVC Section I, IV, and VIII-1 by permission of The American Society of Mechanical Engineers. All rights reserved.

SPENCE

(1) name of Manufacturer of valve;

(2) design or type number of valve;

(3) name of Manufacturer of rupture disk device;

(4) design or type number of rupture disk device;

(5) capacity or combination capacity factor;

(6) name of organization responsible for this marking. This shall be either the vessel user, vessel Manufacturer, rupture disk Manufacturer, or pressure relief valve Manufacturer.

(d) Pressure Relief Valves in Combination With Breaking Pin Devices. Pressure relief valves in combination with breaking pin devices shall be marked in accordance with (a) above. In addition, the rated pressure shall be marked on the breaking pin and the breaking pin housing.

(e) Rupture Disk Devices. Every rupture disk shall be plainly marked by the Manufacturer in such a way that the marking will not be obliterated in service. The rupture disk marking may be placed on the flange of the disk or on a metal tab that satisfies the requirements of UG-119. The marking shall include the following:

(1) the name or identifying trademark of the Manufacturer;

(2) Manufacturer's design or type number;

(3) lot number;

(4) disk material;

(5) size ____ (NPS of rupture disk holder);

(6) marked burst pressure ____ psi;

(7) specified disk temperature _____ °F;

(8) minimum net flow area _____ sq in.;

(9) certified flow resistance K_R ____;

(10) ASME symbol as shown in Fig. UG-129.2;

(11) year built, or alternatively, a coding may be marked on the rupture disk such that the rupture disk device Manufacturer can identify the year the rupture disk device was assembled and tested.

Items (1), (2), and (5) above and flow direction shall also be marked on the rupture disk holder.

(f) Spring Loaded Nonreclosing Pressure Relief Devices. Spring loaded nonreclosing pressure relief devices shall be marked in accordance with (a) above except that the Code Symbol Stamp is to be applied only when the capacity has been established and certified in accordance with UG-127(c)(3) and all other requirements of UG-130 have been met.

A99 UG-130 CODE SYMBOL STAMP

Each pressure relief device⁵⁷ to which the Code Symbol (see Figs. UG-129.1 and UG-129.2) will be applied shall have been fabricated or assembled by a Manufacturer or Assembler holding a valid Certificate of Authorization (UG-117) and capacity certified in accordance with the requirements of this Division.

FIG. UG-129.2 OFFICIAL SYMBOL FOR STAMP TO DENOTE THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS' STANDARD FOR RUPTURE DISK DEVICES

UG-131 CERTIFICATION OF CAPACITY OF PRESSURE RELIEF DEVICES

(a) Before the Code Symbol is applied to any pressure relief device, the device Manufacturers shall have the capacity of their devices certified in accordance with the provisions of these paragraphs. For pressure relief valves, (b) through (j) below apply for rupture disk devices, (k) through (r) below apply except where noted.

(b)(1) Capacity certification tests for pressure relief valves for compressible fluids shall be conducted on dry saturated steam, or air, or gas. When dry saturated steam is used, the limits for test purposes shall be 98% minimum quality and 20°F (11°C) maximum superheat. Correction from within these limits may be made to the dry saturated condition. Pressure relief valves for steam service may be rated as above, but at least one valve of each series shall be tested on steam to demonstrate the steam capacity and performance.

(2) Capacity certification tests for pressure relief valves for incompressible fluids shall be conducted on water at a temperature between 40F and 125°F (4°C and 52°C).

(c)(1) Capacity certification tests shall be conducted at a pressure which does not exceed the pressure for which the pressure relief valve is set to operate by more than 10% or 3 psi (20.6 kPa), whichever is greater, except as provided in (c)(2) below. Minimum pressure for capacity certification tests shall be at least 3 psi (20.6 kPa) above set pressure. The reseating pressure shall be noted and recorded.

(2) Capacity certification tests of pressure relief valves for use in accordance with UG-125(c)(3) may be conducted at a pressure not to exceed 120% of the stamped set pressure of the valve.

(3) (a) Pressure relief valves for compressible fluids having an adjustable blowdown construction shall be adjusted prior to testing so that the blowdown does not exceed 5% of the set pressure or 3 psi (20.6 kPa), whichever is greater.

(b) The blowdown of pressure relief valves for incompressible fluids and pressure relief valves for compressible fluids having nonadjustable blowdown shall be noted and recorded.

(4) Capacity certification of pilot operated pressure relief valves may be based on tests without the pilot valves installed, provided prior to capacity tests it has been demonstrated by test to the satisfaction of the Authorized

 $^{^{\}rm s7}{\rm Vacuum}$ relief devices are not covered by Code Symbol Stamp requirements.

Observer that the pilot valve will cause the main valve to open fully at a pressure which does not exceed the set pressure by more than 10% or 3 psi (20.6 kPa), whichever is greater, and that the pilot valve in combination with the main valve will meet all the requirements of this Division.

(d)(1) A capacity certification test is required on a set of three valves for each combination of size, design, and pressure setting. The stamped capacity rating for each combination of design, size, and test pressure shall not exceed 90% of the average capacity of the three valves tested. The capacity for each set of three valves shall fall within a range of $\pm 5\%$ of the average capacity. Failure to meet this requirement shall be cause to refuse certification of that particular pressure relief valve design.

(2) If a Manufacturer wishes to apply the Code Symbol to a design of pressure relief valves, four valves of each combination of pipe size and orifice size shall be tested. These four valves shall be set at pressures which cover the approximate range of pressures for which the valve will be used or covering the range available at the certified test facility that shall conduct the tests. The capacities based on these four tests shall be as follows.

(a) For compressible fluids, the slope *W*/*P* of the actual measured capacity versus the flow pressure for each test point shall be calculated and averaged:

slope =
$$\frac{W}{P}$$
 = $\frac{\text{measured capacity}}{\text{absolute flow pressure, psia}}$

All values derived from the testing must fall within $\pm 5\%$ of the average value:

minimum slope = 0.95 x average slope

maximum slope = 1.05 x average slope

If the values derived from the testing do not fall between the minimum and maximum slope values, the Authorized Observer shall require that additional valves be tested at the rate of two for each valve beyond the maximum and minimum values with a limit of four additional valves.

The relieving capacity to be stamped on the valve shall not exceed 90% of the average slope times the absolute accumulation pressure:

rated slope = 0.90 x average slope

stamped capacity \leq rated slope (1.10 x set pressure

+ 14.7) or (set pressure + 3 psi

+ 14.7), whichever is greater

For valves certified in accordance with (c)(2) above,

stamped capacity \leq rated slope (1.20 x set pressure

+ 14.7) or (set pressure + 3 psi

+ 14.7), whichever is greater

(b) For incompressible fluids, the capacities shall be plotted on log-log paper against the differential (inlet minus discharge pressure) test pressure and a straight line drawn through these four points. If the four points do not establish a straight line, two additional valves shall be tested for each unsatisfactory point, with a limit of two unsatisfactory points. Any point that departs from the straight line by more than 5% should be considered an unsatisfactory point. The relieving capacity shall be determined from this line. The certified capacity shall not exceed 90% of the capacity taken from the line.

(e) Instead of individual capacity certification as provided in (d) above, a coefficient of discharge *K* may be established for a specific pressure relief valve design according to the following procedure.

(1) For each design, the pressure relief valve Manufacturer shall submit for test at least three valves for each of three different sizes (a total of nine valves) together with detailed drawings showing the valve construction. Each valve of a given size shall be set at a different pressure.

(2) Tests shall be made on each pressure relief valve to determine its capacity-lift, popping and blowdown pressures, and actual capacity in terms of the fluid used in the test. A coefficient KD shall be established for each test run as follows:

$$K_D = \frac{\text{actual flow}}{\text{theoretical flow}} = \text{coefficient of discharge}$$

where actual flow is determined quantitatively by test, and theoretical flow is calculated by the appropriate formula which follows:

For tests with dry saturated steam,

$$W_T = 51.5AP$$

NOTE: For dry saturated steam pressures over 1500 psig and up to 3200 psig, the value of W_{T} calculated by the above equation, shall be corrected by being multiplied by the following factors:

$$\left(\frac{0.1906P - 1000}{0.2292P - 1061}\right)$$

For tests with air,

$$WT = 356 \text{AP} \sqrt{\frac{M}{T}}$$

For tests with natural gas,

$$WT = CAP \sqrt{\frac{M}{ZT}}$$

Reprinted from ASME 1998 BPVC Section I, IV, and VIII-1 by permission of The American Society of Mechanical Engineers. All rights reserved.

- 108 -

For tests with water,

$$WT = 2407 \text{A} \sqrt{(P - P_d)W}$$

where

- W_T = theoretical flow, lb/hr
- actual discharge area through the valve at developed lift, sq in.
- *P* = (set pressure x 1.10) plus atmospheric pressure, psia, or set pressure plus 3 psi plus atmospheric pressure, whichever is greater
- P_d = pressure at discharge from valve, psia
- M = molecular weight
- T = absolute temperature at inlet, ${}^{\circ}F + 460{}^{\circ}F$
- *C* = constant for gas or vapor based on the ratio of specific heats
- $k = c_{\rm p}/c_{\rm v}$ (see Fig. 11-1)
- Z = compressibility factor corresponding to P and T
- w = specific weight of water at valve inlet conditions

The average of the coefficients K_D of the nine tests required shall be multiplied by 0.90, and this product shall be taken as the coefficient *K* of that design. The coefficient of the design shall not be greater than 0.878 (the product of 0.9 x 0.975).

NOTE: All experimentally determined coefficients K_D shall fall within a range of $\pm 5\%$ of the average K_D found. Failure to meet this requirement shall be cause to refuse certification of that particular valve design.

To convert lb/hr of water to gal/min of water, multiply the capacity in lb/hr by 1/500.

(3) The official relieving capacity of all sizes and pressures of a given design, for which K has been established under the provisions of (e)(2) above, that are manufactured subsequently shall not exceed the value calculated by the appropriate formula in (e)(2) above multiplied by the coefficient K (see Appendix 11).

(4) The coefficient shall not be applied to valves whose beta ratio (ratio of valve throat to inlet diameter) lies outside the range of 0.15 to 0.75, unless tests have demonstrated that the individual coefficient of discharge K_D for valves at the extreme ends of a larger range is within $\pm 5\%$ of the average coefficient *K*. For designs where lift is used to determine the flow area, all valves shall have the same nominal lift-to-seat diameter ratio (*L/D*).

(f) Tests shall be conducted at a place where the testing facilities, methods, procedures, and person supervising the tests (Authorized Observer) meet the applicable requirements of ASME PTC 25. The tests shall be made under the supervision of and certified by an Authorized Observer. The testing facilities, methods, procedures, and qualifications of the Authorized observer shall be subject to the acceptance of the ASME on recommendation of a representative from an ASME designated organization. Acceptance of the testing facility is subject to review within each 5 year period. *(g)* Capacity test data reports for each valve model, type, and size, signed by the Manufacturer and the Authorized Observer witnessing the tests shall be submitted to the ASME designated organization for review and acceptance.⁵⁸ Where changes are made in the design, capacity certification tests shall be repeated.

(h) For absolute pressures up to 1500 psia, it is permissible to rate safety valves under PG-69.1.2 of Section I with capacity ratings at a flow pressure of 103% of the set pressure, for use on pressure vessels, without further test. In such instances, the capacity rating of the valve may be increased to allow for the flow pressure permitted in (c)(1) and (c)(3) above, namely, 110% of the set pressure, by the multiplier

where

p = set pressure, psig

Such valves shall be marked in accordance with UG-129. This multiplier shall not be used as a divisor to transform test ratings from a higher to a lower flow.

For steam pressures above 1500 psig (10 MPa), the above multiplier is not applicable. For pressure relief valves with relieving pressures between 1500 psig (10 MPa) and 3200 psig (22 MPa), the capacity shall be determined by using the equation for steam and the correction factor for high pressure steam in (e)(2) above with the permitted absolute relieving pressure (1.10p + 14.7) and the coefficient K for that valve design.

(*i*) Rating of nozzle type pressure relief valves, i.e., coefficient K_{D} greater than 0.90 and nozzle construction, for saturated water shall be according to 11-2.

(*j*) When changes are made in the design of a pressure relief valve in such a manner as to affect the flow path, lift, or performance characteristics of the valve, new tests in accordance with this Division shall be performed.

(*k*) The certified flow resistance K_R of the rupture disk device used in UG-127(a)(2) shall be either $K_R = 2.4$, or as determined in accordance with (1) through (r) below.

(1) Flow resistance certification tests for rupture disk devices shall be conducted with air or gas.

(*m*) Flow resistance certification tests shall be conducted at a rupture disk device inlet pressure which does not exceed 110% of the device set pressure.

(n)(1) The flow resistance for rupture disk devices tested with nonpressure containing disk items, such as seals, support rings, and vacuum supports, is applicable for the same rupture device design without seals, support rings, or vacuum supports.

EXCERPTS FROM

ASME CODE

^{ss}Valve capacities and rupture disk device flow resistances are published in "Pressure Relief Device Certifications". This publication may be obtained from the National Board of Boiler and Pressure Vessel Inspectors, 1055 Crupper Avenue, Columbus, Ohio 43229.

(2) A change in material for rupture disks and their nonpressure containing disk items, such as seals, support rings, and vacuum supports, is not considered a design change and does not require retesting.

(3) Additional linings, coatings, or platings may be used for the same design of rupture disk devices provided:

(a) the certificate holder has performed a verification burst test of rupture disks with the additional linings, coatings, or platings and has documented that the addition of these materials does not affect the rupture disk opening configuration; and

(b) such verification tests shall be conducted with rupture disks of the smallest size and minimum burst pressure for which the certified flow resistance with additional materials to be used.

(o) Flow resistance certification of rupture disk devices shall be determined by one of the following methods.

(1) One Size Method

(a) For each rupture disk device design, three rupture disks from the same lot shall be individually burst and flow tested in accordance with (p) below. The burst pressure shall be the minimum of the rupture disk device design of the size tested.

(b) The certified flow resistance K_R determined in (p) below shall apply only to the rupture disk design of the size tested.

(c) When additional rupture disks of the same design are constructed at a later date, the test results on the original rupture disks may be included as applicable in the three size method described in (o)(2) below.

(2) Three Size Method

(a) This method of flow resistance certification may be used for a rupture disk device design of three or more sizes. The burst pressure shall be the minimum of the rupture disk device design for each of the sizes submitted for test.

(b) For each rupture disk device design, three rupture disks from the same lot shall be burst and flow tested in accordance with (p) below for each of three different sizes of the same design.

(c) The certified flow resistance K_R shall apply to all sizes and pressures of the design of the rupture disk device tested.

(*p*) A certified flow resistance K_R may be established for a specific rupture disk device design according to the following procedure.

(1) For each design, the rupture disk Manufacturer shall submit for test the required rupture disk devices in accordance with (o) above together with the cross section drawings showing the rupture disk device design.

(2) Tests shall be made on each rupture disk device to determine its burst pressure and flow resistance at a facility which meets the requirements of (f) above.

(3) Calculate an average flow resistance using the individual flow resistances determined in (p)(2) above. All

individual flow resistances shall fall within the average flow resistance by an acceptance band of plus or minus three times the average of the absolute values of the deviations of the individual flow resistances from the average flow resistance. Any individual flow resistance that falls outside of this band shall be replaced on a two for one basis. A new average flow resistance shall be computed and the individual flow resistances evaluated as stated above.

(4) The certified flow resistance KR for a rupture disk design shall not be less than zero and shall not be less than the sum of the average flow resistance plus three times the average of the absolute values of the deviations of individual flow resistances from the average flow resistance.

(q) Flow resistance test data reports for each rupture disk device design, signed by the Manufacturer and the Authorized Observer witnessing the tests, shall be submitted to the ASME designated organization for review and acceptance.⁵⁸

(*r*) When changes are made in the design of a rupture disk device which affect the flow path or burst performance characteristics of the device, new tests in accordance with this Division shall be performed.

UG-132 CERTIFICATION OF CAPACITY OF PRESSURE RELIEF VALVES IN COMBINATION WITH NONRECLOSING PRESSURE RELIEF DEVICES

(a) Capacity of Pressure Relief Valves in Combination With a Rupture Disk Device at the Inlet

(1) For each combination of pressure relief valve design and rupture disk device design, the pressure relief valve Manufacturer or the rupture disk device Manufacturer may have the capacity of the combination certified as prescribed in (3) and (4) below.

(2) Capacity certification tests shall be conducted on saturated steam, air, or natural gas. When saturated steam is used, corrections for moisture content of the steam shall be made.

(3) The pressure relief valve Manufacturer or the rupture disk device Manufacturer may submit for tests the smallest rupture disk device size with the equivalent size of pressure relief valve that is intended to be used as a combination device. The pressure relief valve to be tested shall have the largest orifice used in the particular inlet size.

(4) Tests may be performed in accordance with the following subparagraphs. The rupture disk device and pressure relief valve combination to be tested shall be arranged to duplicate the combination assembly design.

(a) The test shall embody the minimum burst pressure of the rupture disk device design which is to be used in combination with the pressure relief valve design. The marked burst pressure shall be between 90% and 100% of the marked set pressure of the valve.

EXCERPTS FROM

A99

(b) The test procedure to be used shall be as follows. The pressure relief valve (one valve) shall be tested for capacity as an individual valve, without the rupture disk device at a pressure 10% or 3 psi (13.8 kPa), whichever is greater, above the valve set pressure.

The rupture disk device shall then be installed at the inlet of the pressure relief valve and the disk burst to operate the valve. The capacity test shall be performed on the combination at 10% or 3 psi (13.8 kPa), whichever is greater, above the valve set pressure duplicating the individual pressure relief valve capacity test.

(c) Tests shall be repeated with two additional rupture disks of the same nominal rating for a total of three rupture disks to be tested with the single pressure valve. The results of the test capacity shall fall within a range of 10% of the average capacity of the three tests. Failure to meet this requirement shall be cause to require retest for determination of cause of the discrepancies.

(d) From the results of the tests, a Combination Capacity Factor shall be determined. The Combination Capacity Factor is the ratio of the average capacity determined by the combination tests to the capacity determined on the individual valve.

The Combination Capacity Factor shall be used as a multiplier to make appropriate changes in the ASME rated relieving capacity of the pressure relief valve in all sizes of the design. The value of the Combination Capacity Factor shall not be greater than one. The Combination Capacity Factor shall apply only to combinations of the same design of pressure relief valve and the same design of rupture disk device as those tested.

(e) The test laboratory shall submit the test results to the ASME designated organization for acceptance of the Combination Capacity Factor.⁵⁸

(b) Optional Testing of Rupture Disk Devices and Pressure Relief Valves

(1) If desired, a valve Manufacturer or a rupture disk Manufacturer may conduct tests in the same manner as outlined in (a)(4)(c) and (a)(4)(d) above using the next two larger sizes of the design of rupture disk device and pressure relief valve to determine a Combination Capacity Factor applicable to larger sizes. If a greater Combination Capacity Factor is established and can be certified, it may be used for all larger sizes of the combination, but shall not be greater than one.

(2) If desired, additional tests may be conducted at higher pressures in accordance with (a)(4)(c) and (a)(4)(d) above to establish a maximum Combination Capacity Factor to be used at all pressures higher than the highest tested, but shall not be greater than one.

(c) Capacity of Breaking Pin Devices in Combination With Pressure Relief Valves

(1) Breaking pin devices in combination with pressure relief valves shall be capacity tested in compliance with UG-131(d) or UG-131(e) as a combination.

(2) Capacity certification and Code Symbol stamping shall be based on the capacity established in accordance with these paragraphs.

UG-133 DETERMINATION OF PRESSURE RELIEVING REQUIREMENTS

(a) Except as permitted in (b) below, the aggregate capacity of the pressure relief devices connected to any vessel or system of vessels for the release of a liquid, air, steam, or other vapor shall be sufficient to carry off the maximum quantity that can be generated or supplied to the attached equipment without permitting a rise in pressure within the vessel of more than 16% above the maximum allowable working pressure when the pressure relief devices are blowing.

(b) Pressure relief devices as permitted in UG-125(c)(2), a protection against excessive pressure caused by exposure to fire or other sources of external heat, shall have a relieving capacity sufficient to prevent the pressure from rising more than 21% above the maximum allowable working pressure of the vessel when all pressure relief devices are blowing.

(c) Vessels connected together by a system of adequate piping not containing valves which can isolate any vessel may be considered as one unit in figuring the required relieving capacity of pressure relief devices to be furnished.

(d) Heat exchangers and similar vessels shall be protected with a pressure relief device of sufficient capacity to avoid overpressure in case of an internal failure.

(e) The official rated capacity, or the certified flow resistance and minimum net flow area, of a pressure relief device shall be that which is stamped on the device and guaranteed by the Manufacturer.

(f) The rated pressure relieving capacity of a pressure relief valve for other than steam or air shall be determined by the method of conversion given in Appendix 11.

(g) To prorate the relieving capacity at any relieving pressure greater than 1.10p, as permitted under UG-125, a multiplier may be applied to the official relieving capacity of a pressure relief device as follows:

$$\frac{P + 14.7}{1.10p + 14.7}$$

where

P = relieving pressure, psig

p = set pressure, psig

For steam pressures above 1500 psig, the above multiplier is not applicable. For steam valves with relieving pressures greater than 1500 psig and less than or equal to 3200 psig, the capacity at relieving pressures greater than 1.10p shall be determined using the equation for steam and the correction factor for high pressure steam in UG-131(e)(2) with the permitted absolute relieving pressure and the coefficient *K* for that valve design.

EXCERPTS FROM ASME CODE

Δ99

UG-134 PRESSURE SETTING OF PRESSURE RELIEF DEVICES

(a) When a single pressure relief device is used, the set pressure⁵⁹ marked on the device shall not exceed the maximum allowable working pressure of the vessel. When the required capacity is provided in more than one pressure relief device, only one pressure relief device need be set at or below the maximum allowable working pressure, and the additional pressure relief devices may be set to open at higher pressures but in no case at a pressure higher than 105% of the maximum allowable working pressure, except as provided in (b) below.

(b) For pressure relief devices permitted in UG-125(c)(2) as protection against excessive pressure caused by exposure to fire or other sources of external heat, the device marked set pressure shall not exceed 110% of the maximum allowable working pressure of the vessel. If such a pressure relief device is used to meet the requirements of both UG-125(c) and UG-125(c)(2), the device marked set pressure shall not be over the maximum allowable working pressure.

(c) The pressure relief device set pressure shall include the effects of static head and constant back pressure.

(d)(1) The set pressure tolerance for pressure relief valves shall not exceed (2 psi (13.8 kPa) for pressures up to and including 70 psi (483 kPa) and (3% for pressures above 70 psi (483 kPa), except as covered in (d)(2) below.

(2) The set pressure tolerance of pressure relief valves which comply with UG-125(c)(3) shall be within -0%, +10%.

(e) The burst pressure tolerance for rupture disk devices at the specified disk temperature shall not exceed (2 psi (13.8 kPa) of marked burst pressure up to 40 psi (276 kPa) and (5% of marked burst pressure 40 psi (276 kPa) and over.

UG-135 INSTALLATION

(a) Pressure relief devices intended for use in compressible fluid service shall be connected to the vessel in the vapor space above any contained liquid or to piping connected to the vapor space in the vessel which is to be protected. Pressure relief devices intended for use in liquid service shall be connected below the normal liquid level.

(b)(1) The opening through all pipe, fittings, and nonreclosing pressure relief devices (if installed) between a pressure vessel and its pressure relief valve shall have at least the area of the pressure relief valve inlet. The characteristics of this upstream system shall be such that the pressure drop will not reduce the relieving capacity

⁵⁹The set pressure is the value of increasing inlet static pressure at which a pressure relief device displays one of the operational characteristics as defined by opening pressure, popping pressure, start-to-leak pressure, burst pressure, or breaking pressure. (The applicable operating characteristic for a specific device design is specified by the device Manufacturer. below that required or adversely affect the proper operation of the pressure relief valve.

(2) The opening in the vessel wall shall be designed to provide unobstructed flow between the vessel and its pressure relief device (see Appendix M).⁶⁰

(c) When two or more required pressure relief devices are placed on one connection, the inlet internal crosssectional area of this connection shall be either sized to avoid restricting flow to the pressure relief devices or made at least equal to the combined inlet areas of the safety devices connected to it. The flow characteristics of the upstream system shall satisfy the requirements of (b) above. (See Appendix M.)

(d) There shall be no intervening stop valves between the vessel and its pressure relief device or devices, or between the pressure relief device or devices and the point of discharge, except:

(1) when these stop valves are so constructed or positively controlled that the closing of the maximum number of block valves possible at one time will not reduce the pressure relieving capacity provided by the unaffected pressure relief devices below the required relieving capacity; or

(2) under conditions set forth in Appendix M.

(e) The pressure relief devices on all vessels shall be so installed that their proper functioning will not be hindered by the nature of the vessel's contents.

(f) Discharge lines from pressure relief devices shall be designed to facilitate drainage or shall be fitted with drains to prevent liquid from lodging in the discharge side of the pressure relief device, and such lines shall lead to a safe place of discharge. The size of the discharge lines shall be such that any pressure that may exist or develop will not reduce the relieving capacity of the pressure relief devices below that required to properly protect the vessel, or adversely affect the proper operation of the pressure relief devices. [See UG-136(a)(8) and Appendix M.]

UG-136 MINIMUM REQUIREMENTS FOR PRESSURE RELIEF VALVES

UG-136(a) Mechanical Requirements

UG-136(a)(1) The design shall incorporate guiding arrangements necessary to ensure consistent operation and tightness.

UG-133

Reprinted from ASME 1998 BPVC Section I, IV, and VIII-1 by permission of The American Society of Mechanical Engineers. All rights reserved.

⁶⁰Users are warned that the proper operation of various rupture disk devices depends upon following the Manufacturer's installation instructions closely with regard to the flow direction marked on the device. Some device designs will burst at pressures much greater than their marked burst pressure when installed with the process pressure on the vent side of the device.

UG-136(a)(2) The spring shall be designed so that the full lift spring compression shall be no greater than 80% of the nominal solid deflection. The permanent set of the spring (defined as the difference between the free height and height measured 10 min after the spring has been compressed solid three additional times after presetting at room temperature) shall not exceed 0.5% of the free height.

UG-136(a)(3) Each pressure relief valve on air, water over 140F (60C), or steam service shall have a substantial lifting device which when activated will release the seating force on the disk when the pressure relief valve is subjected to a pressure of at least 75% of the set pressure of the valve. Pilot operated pressure relief valves used on these services shall be provided with either a lifting device as described above or means for connecting and applying pressure to the pilot adequate to verify that the moving parts critical to proper operation are free to move.

UG-136(a)(4) The seat of a pressure relief valve shall be fastened to the body of the pressure relief valve in such a way that there is no possibility of the seat lifting.

UG-136(a)(5) In the design of the body of the pressure relief valve, consideration shall be given to minimizing the effects of deposits.

UG-136(a)(6) Pressure relief valves having screwed inlet or outlet connections shall be provided with wrenching surfaces to allow for normal installation without damaging operating parts.

UG-136(a)(7) Means shall be provided in the design of all pressure relief valves for use under this Division for sealing all initial adjustments which can be made without disassembly of the valve. Seals shall be installed by the Manufacturer or Assembler at the time of initial adjustment. Seals shall be installed in a manner to prevent changing the adjustment without breaking the seal. For pressure relief valves larger than NPS 1/2 (DN 15), the seal shall serve as a means of identifying the Manufacturer or Assembler making the initial adjustment.

UG-136(a)(8) If the design of a pressure relief valve is such that liquid can collect on the discharge side of the disk, except as permitted in (a)(9) below, the valve shall be equipped with a drain at the lowest point where liquid can collect (for installation, see UG-135).

UG-136(a)(9) Pressure relief valves that cannot be equipped with a drain as required in (a)(8) above because of design or application may be used provided:

(a) the pressure relief valves are used only on gas service where there is neither liquid discharged from the valve nor liquid formed by condensation on the discharge side of the valve; and

(b) the pressure relief valves are provided with a cover or discharge piping per UG-135(g) to prevent liquid or other contaminant from entering the discharge side of the valve; and

(c) the pressure relief valve is marked FOR GAS SERVICE ONLY in addition to the requirements of UG-129.

UG-136(a)(10) For pressure relief values of the diaphragm type, the space above the diaphragm shall be vented to prevent a buildup of pressure above the diaphragm. Pressure relief values of the diaphragm type shall be designed so that failure or deterioration of the diaphragm material will not impair the ability of the value to relieve at the rated capacity.

UG-136(b) Material Selections

UG-136(b)(1) Cast iron seats and disks are not permitted.

UG-136(b)(2) Adjacent sliding surfaces such as guides and disks or disk holders shall both be of corrosion resistant material. Springs of corrosion resistant material or having a corrosion resistant coating are required. The seats and disks of pressure relief valves shall be of suitable material to resist corrosion by the fluid to be contained.

NOTE: The degree of corrosion resistance, appropriate to the intended service, shall be a matter of agreement between the manufacturer and the purchaser.

UG-136(b)(3) Materials used in bodies and bonnets or yokes shall be listed in Section II and this Division. Carbon and low alloy steel bodies, bonnets, yokes and bolting (UG-20) subject to in-service temperatures colder than -20°F (-23°C) shall meet the requirements of UCS-66, unless exempted by the following.

(a) The coincident ratio defined in Fig. UCS-66.1 is 0.35 or less.

(b) The material(s) is exempted from impact testing per Fig. UCS-66.

 \overline{UG} -136 $\overline{(b)}(4)$ Materials used in nozzles, disks, and other parts contained within the external structure of the pressure relief valves shall be one of the following categories:

(a) listed in Section II;

(b) listed in ASTM specifications;

(c) controlled by the Manufacturer of the pressure relief valve by a specification ensuring control of chemical and physical properties and quality at least equivalent to ASTM standards.

UG-136(c) Inspection of Manufacturing and/or Assembly of Pressure Relief Valves

UG-136(c)(1) A Manufacturer or Assembler shall demonstrate to the satisfaction of a representative from an ASME designated organization that his manufacturing, production, and testing facilities and quality control procedures will insure close agreement between the performance of random production samples and the performance of those valves submitted for Capacity Certification.

UG-136(c)(2) Manufacturing, assembly, inspection and test operations including capacity are subject to inspections at any time by a representative from an ASME designated organization.

EXCERPTS FROM ASME CODE UG-136(c)(3) A Manufacturer or Assembler may be granted permission to apply the UV Code Symbol to production pressure relief valves capacity certified in accordance with UG-131 provided the following tests are successfully completed. This permission shall expire on the fifth anniversary of the date it is initially granted. The permission may be extended for 5 year periods if the following tests are successfully repeated within the 6month period before expiration.

(a) Two sample production pressure relief valves of a size and capacity within the capability of an ASME accepted laboratory shall be selected by a representative from an ASME designated organization.

(b) Operational capacity tests shall be conducted in the presence of a representative from an ASME designated organization at an ASME accepted laboratory. The pressure relief valve Manufacturer or Assembler shall be notified of the time of the test and may have representatives present to witness the test. Pressure relief valves having an adjustable blowdown construction shall be adjusted by the Manufacturer or Assembler following successful testing for operation but prior to flow testing so that the blowdown does not exceed 7% of the set pressure or 3 psi (20.6 kPa), whichever is greater. This adjustment may be made on the flow test facility.

(c) Should any pressure relief valve fail to relieve at or above its certified capacity or should it fail to meet performance requirements of this Division, the test shall be repeated at the rate of two replacement pressure relief valves, selected in accordance with (c)(3)(a) above, for each pressure relief valve that failed.

(d) Failure of any of the replacement pressure relief valves to meet the capacity or the performance requirements of this Division shall be cause for revocation within 60 days of the authorization to use the Code Symbol on that particular type of pressure relief valve. During this period, the Manufacturer or Assembler shall demonstrate the cause of such deficiency and the action taken to guard against future occurrence, and the requirements of (c)(3) above shall apply.

UG-136(c)(4) Use of the Code Symbol Stamp by an Assembler indicates the use of original, unmodified parts in strict accordance with the instructions of the Manufacturer of the pressure relief valve.

(a) An assembler may transfer original and unmodified pressure relief parts produced by the Manufacturer to other Assemblers provided the following conditions are met:

(1) the Assemblers hold a V or UV Code Symbol Stamp and are authorized by the Manufacturer to assemble and test the specific valve type in which parts are to be used;

(2) the Quality Control System of the Assembler receiving the pressure relief valve parts shall define the controls for the procurement and acceptance of those parts; and

(3) the pressure relief valve parts are appropriately packaged, marked, or sealed by the Manufacturer to ensure that the parts are:

(a) produced by the Manufacturer; and

(b) the parts are original and unmodified.

UG-136(c)(5) In addition to the requirements of UG-129, the marking shall include the name of the Manufacturer and the final Assembler. The Code Symbol Stamp shall be that of the final Assembler.

NOTE: Within the requirements of UG-136(c) and (d): A Manufacturer is defined as a person or organization who is completely responsible for design, material selection, capacity certification, manufacture of all component parts, assembly, testing, sealing, and shipping of pressure relief valves certified under this Division. An Assembler is defined as a person or organization who purchases or receives from a Manufacturer or another Assembler the necessary component parts or pressure relief valves certified under this Division, at a geographical location other than and using facilities other than those used by the Manufacturer or may be wholly or partly owned by the Manufacturer.

UG-136(d) Production Testing by Manufacturers and Assemblers

UG-136(d)(1) Each pressure relief valve to which the Code Symbol Stamp is to be applied shall be subjected to the following tests by the Manufacturer or Assembler. A Manufacturer or Assembler shall have a documented program for the application, calibration, and maintenance of gages and instruments used during these tests.

UG-136(d)(2) The primary pressure parts of each pressure relief valve exceeding NPS 1 (DN 25) inlet size or 300 psi (2070 kPa) set pressure where the materials used are either cast or welded shall be tested at a pressure of at least 1.5 times the design pressure of the parts. These tests shall be conducted after all machining operations on the parts have been completed. There shall be no visible sign of leakage.

UG-136(d)(3) The secondary pressure zone of each closed bonnet pressure relief valve exceeding NPS 1 (DN 25) inlet size when such pressure relief valves are designed for discharge to a closed system shall be tested with air or other gas at a pressure of at least 30 psi (207 kPa). There shall be no visible sign of leakage.

UG-136(d)(4) Each pressure relief valve shall be tested to demonstrate its popping or set pressure. Pressure relief valves marked for steam service or having special internal parts for steam service shall be tested with steam, except that pressure relief valves beyond the capability of the production steam test facility either because of size or set pressure may be tested on air. Necessary corrections for differentials in popping pressure between steam and air shall be established by the Manufacturer and applied to the popping point on air. Pressure relief valves marked for gas or vapor may be tested with air. Pressure relief valves marked for liquid service shall be tested with water or other suitable liquid. When a valve is adjusted to correct for

EXCERPTS FROM

UG-137

service conditions of superimposed back pressure, temperature, or the differential in popping pressure between steam and air, the actual test pressure (cold differential test pressure) shall be marked on the valve per UG-129. Test fixtures and test drums where applicable shall be of adequate size and capacity to ensure that pressure relief valve action is consistent with the stamped set pressure within the tolerances required by UG-134(d).

UG-136(d)(5) After completion of the tests required by (d)(4) above, a seat tightness test shall be conducted. Unless otherwise designated by a Manufacturer's published pressure relief valve specification, the seat tightness test and acceptance criteria shall be in accordance with API 527.

UG-136(d)(6) Testing time on steam pressure relief valves shall be sufficient, depending on size and design, to insure that test results are repeatable and representative of field performance.

UG-136(e) Design Requirements. At the time of the submission of pressure relief valves for capacity certification, or testing in accordance with (c)(3) above, the ASME designated organization has the authority to review the design for conformity with the requirements of UG-136(a) and UG-136(b) and to reject or require modification of designs which do not conform, prior to capacity testing.

UG-136(f) Welding and Other Requirements. All welding, brazing, heat treatment, and nondestructive examination used in the construction of bodies, bonnets, and yokes shall be performed in accordance with the applicable requirements of this Division.

UG-137 MINIMUM REQUIREMENTS FOR RUPTURE DISK DEVICES

UG-137(a) Mechanical Requirements

UG-137(a)(1) The design shall incorporate arrangements necessary to ensure consistent operation and tightness.

UG-137(a)(2) Rupture disk devices having threaded inlet or outlet connections shall be designed to allow for normal installation without damaging the rupture disk.

UG-137(b) Material Selections

UG-137(b)(1) The rupture disk material is not required to conform to a material specification listed in ASME Section II. The rupture disk material shall be controlled by the Manufacturer of the rupture disk device by a specification ensuring the control of material properties.

UG-137(b)(2) Materials used in rupture disk holders shall be listed in Section II and this Division. Carbon and low alloy steel holders and bolting (UG-20) subject to inservice temperatures colder than -20°F shall meet the requirements of UCS-66, unless exempted by the following.

(a) The coincident ratio defined in Fig. UCS-66.1 is 0.40 or less.

(b) The material(s) is exempted from impact testing per Fig. UCS-66.

UG-137(b)(3) Materials used in other parts contained within the external structure of the rupture disk holder shall be one of the following categories.

(a) listed in Section II; or

(b) listed in ASTM specifications; or

(c) controlled by the Manufacturer of the rupture disk device by a specification insuring control of chemical and physical properties and quality at least equivalent to ASTM standards.

UG-137(c) Inspection of Manufacturing of Rupture Disk Devices

UG-137(c)(1) A Manufacturer shall demonstrate to the satisfaction of a representative of an ASME designated organization that its manufacturing, production, and testing facilities and quality control procedures will insure close agreement between the performance of random production samples and the performance of those devices submitted for Certification.

UG-137(c)(2) Manufacturing, assembly, inspection, and test operations are subject to inspections at any time by an ASME designee.

UG-137(c)(3) A Manufacturer may be granted permission to apply the UD Code Symbol to production rupture disk devices certified in accordance with UG-131 provided the following tests are successfully completed. This permission shall expire on the fifth anniversary of the date it is initially granted. The permission may be extended for five year periods if the following tests are successfully repeated within the 6 month period before expiration.

(a) Two production sample rupture disk devices of a size and capacity within the capability of an ASME accepted laboratory shall be selected by a representative of an ASME designated organization.

(b) Burst and flow testing shall be conducted in the presence of a representative of an ASME designated organization at a place which meets the requirements of UG-131(f). The device Manufacturer shall be notified of the time of the test and may have representatives present to witness the test.

(c) Should any device fail to meet or exceed the performance requirements (burst pressure, minimum net flow area, and flow resistance) of UG-127, the test shall be repeated at the rate of two replacement devices, selected and tested in accordance with (c)(3)(a) and (c)(3)(b) above for each device that failed.

(d) Failure of any of the replacement devices to meet the performance requirements of this Division shall be cause for revocation within 60 days of the

ASME CODE

NOTES:

SPENCE

APPENDIX M INSTALLATION AND OPERATION

M-1 INTRODUCTION

(a) The rules in this Appendix are for general information only, because they pertain to the installation and operation of pressure vessels, which are the prerogative and responsibility of the law enforcement authorities in those states and municipalities which have made provision for the enforcement of Section VIII.

(b) It is permissible to use any departures suggested herein from provisions in the mandatory parts of this Division when granted by the authority having legal jurisdiction over the installation of pressure vessels.

M-2 CORROSION

(a) Vessels subject to external corrosion shall be so installed that there is sufficient access to all parts of the exterior to permit proper inspection of the exterior, unless adequate protection against corrosion is provided or unless the vessel is of such size and is so connected that it may readily be removed from its permanent location for inspection.

(b) Vessels having manholes, handholes, or cover plates to permit inspection of the interior shall be so installed that these openings are accessible.

(c) In vertical cylindrical vessels subject to corrosion, to insure complete drainage, the bottom head, if dished should preferably be concave to pressure.

M-3 MARKING ON THE VESSEL

The marking required by this Division shall be so located that it will be accessible after installation and when installed shall not be covered with insulation or other material that is not readily removable [see UG-116(j)].

M-4 PRESSURE RELIEVING SAFETY DEVICES

The general provisions for the installation of pressure relieving devices are fully covered in UG-135. The following

paragraphs contain details in arrangement of stop valves for shutoff control of safety pressure relief devices which are sometimes necessary to the continuous operation of processing equipment of such a complex nature that the shutdown of any part of it is not feasible. There are also rules with regard to the design of inlet and discharge piping to and from safety and relief valves, which can only be general in nature because the design engineer must fit the arrangement and proportions of such a system to the particular requirements in the operation of the equipment involved.

M-5 STOP VALVES BETWEEN PRESSURE RELIEVING DEVICE AND VESSEL

(a) A vessel, in which pressure can be generated because of service conditions, may have a full-area stop valve between it and its pressure relieving device for inspection and repair purposes only. When such a stop valve is provided, it shall be so arranged that it can be locked or sealed open, and it shall not be closed except by an authorized person who shall remain stationed there during that period of the vessel's operation within which the valve remains closed, and who shall again lock or seal the stop valve in the open position before leaving the station.

(b) A vessel or system [see UG-133(c)] for which the pressure originates from an outside source exclusively may have individual pressure relieving devices on each vessel, or connected to any point on the connecting piping, or on any one of the vessels to be protected. Under such an arrangement, there may be a stop valve between any vessel and the pressure relieving devices, and this stop valve need not be locked open, provided it also closes off that vessel from the source of pressure.

M-6 STOP VALVES ON THE DISCHARGE SIDE OF A PRESSURE RELIEVING DEVICE [SEE UG-135(E)]

A full-area stop valve may be placed on the discharge side of a pressure relieving device when its discharge is

Reprinted from ASME 1998 BPVC Section I, IV, and VIII-1 by permission of The American Society of Mechanical Engineers. All rights reserved.

connected to a common header with other discharge lines from other pressure relieving devices on nearby vessels that are in operation, so that this stop valve when closed will prevent a discharge from any connected operating vessels from backing up beyond the valve so closed. Such a stop valve shall be so arranged that it can be locked or sealed in either the open or closed position, and it shall be locked or sealed in either position only by an authorized person. When it is to be closed while the vessel is in operation, an authorized person shall be present, and he shall remain stationed there; he shall again lock or seal the stop valve in the open position before leaving the station. Under no condition should this valve be closed while the vessel is in operation except when a stop valve on the inlet side of the safety relieving device is installed and is first closed.

M-7 INLET PRESSURE DROP FOR HIGH LIFT, TOP GUIDED SAFETY, SAFETY RELIEF, AND PILOT OPERATED PRESSURE RELIEF VALVES IN COMPRESSIBLE FLUID SERVICE

(a) The nominal pipe size of all piping, valves and fittings, and vessel components between a pressure vessel and its safety, safety relief, or pilot operated pressure relief valves shall be at least as large as the nominal size of the device inlet, and the flow characteristics of the upstream system shall be such that the cumulative total of all nonrecoverable inlet losses shall not exceed 3% of the valve set pressure. The inlet pressure losses will be based on the valve nameplate capacity corrected for the characteristics of the flowing fluid.

(b) When two or more required safety, safety relief or pilot operated pressure relief valves are placed on one connection, the inlet internal cross-sectional area of this connection shall be either sized to avoid restricting flow to the pressure relief valves or made at least equal to the combined inlet areas of the safety valves connected to it. The flow characteristics of the upstream system shall meet the requirements of (a) above with all valves relieving simultaneously.

M-8 DISCHARGE LINES FROM SAFETY DEVICES

(a) Where it is feasible, the use of short discharge pipe or vertical riser, connected through long-radius elbows from each individual device, blowing directly to the atmosphere, is recommended. Such discharge pipes shall be at least of the same size as the valve outlet. Where the nature of the discharge permits, telescopic (sometimes called "broken") discharge lines, whereby condensed vapor in the discharge line, or rain, is collected in a drip pan and piped to a drain, are recommended. $^{\scriptscriptstyle 1}$

(b) When discharge lines are long, or where outlets of two or more valves having set pressures within a comparable range are connected into a common line, the effect of the back pressure that may be developed therein when certain valves operate must be considered [see UG-135(g)]. The sizing of any section of a common-discharge header downstream from each of the two or more pressure relieving devices that may reasonably be expected to discharge simultaneously shall be based on the total of their outlet areas, with due allowance for the pressure drop in all downstream sections. Use of specially designed valves suitable for use on high or variable back pressure service should be considered.

(c) The flow characteristics of the discharge system of high lift, top guided safety, safety relief, or pilot operated pressure relief valves in compressible fluid service shall be such that the static pressure developed at the discharge flange of a conventional direct spring loaded valve will not exceed 10% of the set pressure when flowing at stamp capacity. Other valve types exhibit various degrees of tolerance to back pressure and the manufacturer's recommendation should be followed.

(d) All discharge lines shall be run as direct as is practicable to the point of final release for disposal. For the longer lines, due consideration shall be given to the advantage of long-radius elbows, avoidance of closeup fittings, and the minimizing of excessive line strains by expansion joints and well-known means of support to minimize line-sway and vibration under operating conditions.

(e) Provisions should be made in all cases for adequate drainage of discharge lines.

NOTE: It is recognized that no simple rule can be applied generally to fit the many installation requirements, which vary from simple short lines that discharge directly to the atmosphere to the extensive manifold discharge piping systems where the quantity and rate of the product to be disposed of requires piping to a distant safe place.

M-9 PRESSURE DROP, NONRECLOSING PRESSURE RELIEF DEVICES

Piping, valves and fittings, and vessel components comprising part of a nonreclosing device pressure relieving system shall be sized to prevent the vessel pressure from rising above the allowable overpressure.

M-6

^{&#}x27;This construction has the further advantage of not transmitting discharge-pipe strains to the valve. In these types of installation, the back pressure effect will be negligible, and no undue influence upon normal valve operation can result.

M-10 GENERAL ADVISORY INFORMATION ON THE CHARACTERISTICS OF SAFETY RELIEF VALVES DISCHARGING INTO A COMMON HEADER

Because of the wide variety of types and kinds of safety relief valves, it is not considered advisable to attempt a description in this Appendix of the effects produced by discharging them into a common header. Several different types of valves may conceivably be connected into the same discharge header and the effect of back pressure on each type may be radically different. Data compiled by the manufacturers of each type of valve used should be consulted for information relative to its performance under the conditions anticipated.

M-11 PRESSURE DIFFERENTIALS FOR PRESSURE RELIEF VALVES

Due to the variety of service conditions and the various designs of safety and safety relief valves, only general guidance can be given regarding the differential between the set pressure of the valve (see UG-134) and the operating pressure of the vessel. Operating difficulty will be minimized by providing an adequate differential for the application. The following is general advisory information on the characteristics of the intended service and of the safety or safety relief valves that may bear on the proper pressure differential selection for a given application. These considerations should be reviewed early in the system design since they may dictate the MAWP of the system.

(a) Consideration of the Process Characteristics in the Establishment of the Operating Margin to Be Provided. To minimize operational problems, it is imperative that the user consider not only normal operating conditions of fluids, pressures, and temperatures, but also start-up and shutdown conditions, process upsets, anticipated ambient conditions, instrument response times, pressure surges due to quick closing valves, etc. When such conditions are not considered, the pressure relieving device may become, in effect, a pressure controller, a duty for which it is not designed. Additional consideration should be given to hazard and pollution associated with the release of the fluid. Larger differentials may be appropriate for fluids which are toxic, corrosive, or exceptionally valuable.

(b) Consideration of Safety Relief Valve Characteristics. The blowdown characteristic and capability is the first consideration in selecting a compatible valve and operating margin. After a self-actuated release of pressure, the valve must be capable of reclosing above the normal operating pressure. For example, if the valve is set at 100 psig with a 7% blowdown, it will close at 93 psig. The operating pressure must be maintained below 93 psig in order to prevent leakage or flow from a partially open valve. Users should exercise caution regarding the blowdown adjustment of large spring-loaded valves. Test facilities, whether owned by Manufacturers, repair houses, or users, may not have sufficient capacity to accurately verify the blowdown setting. The settings cannot be considered accurate unless made in the field on the actual installation.

Pilot-operated valves represent a special case from the standpoints of both blowdown and tightness. The pilot portion of some pilot-operating valves can be set at blowdowns as short as 2%. This characteristic is not, however, reflected in the operation of the main valve in all cases. The main valve can vary considerably from the pilot depending on the location of the two components in the system. If the pilot is installed remotely from the main valve, significant time and pressure lags can occur, but reseating of the pilot assures reseating of the main valve. The pressure drop in the connecting piping between the pilot and the main valve must not be excessive; otherwise, the operation of the main valve will be adversely affected.

The tightness of the main valve portion of these combinations is considerably improved above that of conventional valves by pressure loading the main disk or by the use of soft seats or both.

Despite apparent advantages of pilot-operated valves, users should be aware that they should not be employed in abrasive or dirty service, in applications where coking, polymerization, or corrosion of the wetted pilot parts can occur, or where freezing or condensation of the lading fluid at ambient temperatures is possible.

For all applications the valve Manufacturer should be consulted prior to selecting a valve of this type.

Tightness capability is another factor affecting valve selection, whether spring loaded or pilot operated. It varies somewhat depending on whether metal or resilient seats are specified, and also on such factors as corrosion or temperature. The required tightness and test method should be specified to comply at a pressure no lower than the normal operating pressure of the process. A recommended procedure and acceptance standard is given in API 527. It should also be remembered that any degree of tightness obtained should not be considered permanent. Service operation of a valve almost invariably reduces the degree of tightness.

Application of special designs such as O-rings or resilient seats should be reviewed with the valve Manufacturer.

The anticipated behavior of the valves includes allowance for a plus-or-minus tolerance on set pressure which varies with the pressure level. Installation conditions, such as back pressure, variations, and vibrations, influence selection of special types and an increase in differential pressure. (c) General Recommendations. The following pressure differentials are recommended unless the safety or safety relief valve has been designed or tested in a specific or similar service and a smaller differential has been recommended by the Manufacturer.

A minimum difference of 5 psi (35 kPa) is recommended for set pressures to 70 psi. In this category, the set pressure tolerance is ± 2 psi (± 13.8 kPa) [UG-134(d)(1)], and the differential to the leak test pressure is 10% or 5 psi (35 kPa), whichever is greater.

A minimum differential of 10% is recommended for set pressures from 71 psi to 1000 psi (490 kPa to 6900 kPa). In this category, the set pressure tolerance is $\pm 3\%$ and the differential to the leak test pressure is 10%.

A minimum differential of 7% is recommended for set pressures above 1000 psi (6900 kPa). In this category, the set pressure tolerance is (3% and the differential to the leak test pressure should be 5%. Valves having small seat sizes will require additional maintenance when the pressure differential approaches these recommendations.

M-12 INSTALLATION OF SAFETY AND SAFETY RELIEF VALVES

Spring loaded safety and safety relief valves normally should be installed in the upright position with the spindle vertical. Where space or piping configuration preclude such an installation, the valve may be installed in other than the vertical position provided that:

(a) the valve design is satisfactory for such position;

(b) the media is such that material will not accumulate at the inlet of the valve; and

(c) drainage of the discharge side of the valve body and discharge piping is adequate.

M-13 REACTION FORCES AND EXTERNALLY APPLIED LOADS

(a) Reaction Thrust. The discharge of a pressure relief valve imposes reactive flow forces on the valve and associated piping. The design of the installation may require computation of the bending moments and stresses in the piping and vessel nozzle. There are momentum effects and pressure effects at steady state flow as well as transient dynamic loads caused by opening.

(b) External Loads. Mechanical forces may be applied to the valve by discharge piping as a result of thermal expansion, movement away from anchors, and weight of any unsupported piping. The resultant bending moments on a closed pressure relief valve may cause valve leakage and excessive stress in inlet piping. The design of the installation should consider these possibilities.

M-14 SIZING OF PRESSURE RELIEF DEVICES FOR FIRE CONDITIONS

(a) Excessive pressure may develop in pressure vessels by vaporization of the liquid contents and/or expansion of vapor content due to heat influx from the surroundings, particularly from a fire. Pressure relief systems for fire conditions are usually intended to release only the quantity of product necessary to lower the pressure to a predetermined safe level, without releasing an excessive quantity. This control is especially important in situations where release of the contents generates a hazard because of flammability or toxicity. Under fire conditions, consideration must also be given to the possibility that the safe pressure level for the vessel will be reduced due to heating of the vessel material, with a corresponding loss of strength.

(b) Several formulas have evolved over the years for calculating the pressure relief capacity required under fire conditions. The major differences involve heat flux rates. There is no single formula yet developed which takes into account all of the many factors which could be considered in making this determination. When fire conditions are a consideration in the design of a pressure vessel, the following references which provide recommendations for specific installations may be used:

API RP 520, Recommended Practice for the Design and Installation of Pressure-Relieving Systems in Refineries, Part I - Design, 1976, American Petroleum Institute, Washington, DC

API Standard 2000, Venting Atmospheric and Low-Pressure Storage Tanks (nonrefrigerated and refrigerated), 1973, American Petroleum Institute, Washington, DC

AAR Standard M-1002, Specifications for Tank Cars, 1978, Association of American Railroads, Washington, DC

Safety Relief Device Standards: S-1.1, Cylinders for Compressed Gases; S-1.2, Cargo and Portable Tanks; and S-1.3, Compressed Gas Storage Containers, Compressed Gas Association, Arlington, VA

NFPA Code Nos. 30, 59, and 59A, National Fire Protection Association, Boston, MA

Pressure-Relieving Systems for Marine Cargo Bulk Liquid Containers, 1973, National Academy of Sciences, Washington, DC

Bulletin E-2, How to Size Safety Relief Devices, Phillips Petroleum Company, Bartlesville, OK

A Study of Available Fire Test Data as Related to Tank Car Safety Device Relieving Capacity Formulas, 1971, Phillips Petroleum Company, Bartlesville, OK

EXCERPTS FROM

M-15 PRESSURE INDICATING DEVICE

If a pressure indicating device is provided to determine the vessel pressure at or near the set pressure of the relief device, one should be selected that spans the set pressure of the relief device and is graduated with an upper limit that is neither less than 1.25 times the set pressure of the relief device nor more than twice the maximum allowable working pressure of the vessel. Additional devices may be installed if desired.

NOTES:

SPENCE

APPENDIX 11 CAPACITY CONVERSIONS FOR SAFETY VALVES

11-1

The capacity of a safety or relief valve in terms of a gas or vapor other than the medium for which the valve was officially rated shall be determined by application of the following formulas:1

For steam,

$$W_s = 51.5 KAP$$

For air.

$$W_a = CKAP \sqrt{\frac{M}{T}}$$
$$C = 356$$
$$M = 28.97$$

T = 520 when W_a is the rated capacity For any gas or vapor,

$$W_a = CKAP \sqrt{\frac{M}{T}}$$

where

- W_s = rated capacity, lb/hr of steam W_a = rated capacity, converted to lb/hr of air at 60F, inlet temperature
- W = flow of any gas or vapor, lb/hr
- C = constant for gas or vapor which is function of the ratio of specific heats, k = cp/cv (see Fig. 11-1)
- K = coefficient of discharge [see UG-131(d) and (e)]

Official Rating in Air

Official Rating in Steam

KA

$$= \frac{Ws}{51.5} \qquad KA = \frac{Wa}{CP} \quad \Upsilon$$

This value for KA is then substituted in the above formulas to determine the capacity of the safety valve in terms of the new gas or vapor.

- A = actual discharge area of the safety valve, sq. in.
- = (set pressure x 1.10) plus atmosphere pressure, psia
- M = molecular weight
- T = absolute temperature at inlet (F + 460)

These formulas may also be used when the required flow of any gas or vapor is known and it is necessary to compute the rated capacity of steam or air.

Molecular weights of some of the common gases and vapors are given in Table 11-1.

For hydrocarbon vapors, where the actual value of *k* is not known, the conservative value, k = 1.001 has been commonly used and the formula becomes

$$W = 315 KAP \sqrt{\frac{M}{T}}$$

When desired, as in the case of light hydrocarbons, the compressibility factor Z may be included in the formulas for gases and vapors as follows:

$$W = CKAP \sqrt{\frac{M}{ZT}}$$

Example 1

GIVEN: A safety valve bears a certified capacity rating of 3020 lb/hr of steam for a pressure setting of 200 psi. PROBLEM: What is the relieving capacity of that valve in terms of air at 100°F for the same pressure setting?

SOLUTION:

For steam

$$W_s = 51.5 KAP$$

 $3020 = 51.5 KAP$
 $KAP = \frac{3020}{51.5} = 58.5$

Reprinted from ASME 1998 BPVC Section I, IV, and VIII-1 by permission of The American Society of Mechanical Engineers. All rights reserved.

¹Knowing the official rating capacity of a safety valve which is stamped on the valve, it is possible to determine the overall value of KA in either of the following formulas in cases where the value of these individual terms is not known

SECTION VIII

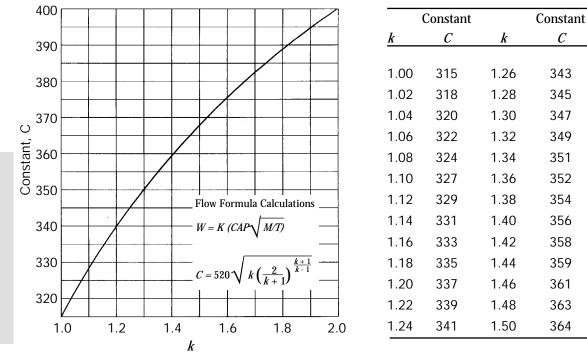


FIG. 11-1 CONSTANT C FOR GAS OR VAPOR RELATED TO RATIO OF SPECIFIC HEATS ($k = c_p/c_y$)

For air

$$W_a = CKAP \sqrt{\frac{M}{T}}$$

= 356 KAP $\sqrt{\frac{28.97}{460 + 100}}$
= 356 (58.5) $\sqrt{\frac{28.97}{560}}$
= 4750 lb/hr

EXAMPLE 2

GIVEN: It is required to relieve 5000 lb/hr of propane from a pressure vessel through a safety valve set to relieve at a pressure of Ps, psi, and with an inlet temperature at 125°F.

PROBLEM: what total capacity in pounds of steam per hour in safety valves must be furnished?

Solution: For propane,

EXCERPTS FROM

E CODE

NPFNC

The value of *C* is not definitely known. Use the conservative value, C = 315.

TABLE 11-1 MOLECULAR WEIGHTS OF GASES AND VAPORS

Air	28.97	Freon 22	86.48
Acetylene	26.04	Freon 114	170.90
Ammonia	17.03	Hydrogen	2.02
Butane	58.12	Hydrogen Sulfide	34.08
Carbon Dioxide	44.01	Methane	16.04
Chlorine	70.91	Methyl Chloride	50.48
Ethane	30.07	Nitrogen	28.02
Ethylene	28.05	Oxygen	32.00
Freon 11	137.371	Propane	44.09
Freon 12	120.9	Sulfur Dioxide	64.06

$$5000 = 315 \ KAP \sqrt{\frac{44.09}{460 + 125}}$$

$$KAP = 57.7$$

For steam,

$$W_s = 51.5 \ KAP = (51.5)(57.7)$$

= 2970 lb/hr set to relieve at P_{s} psi

Constant

С

366

368

369

371

372

374

376

377

379

380

400

412

...

k

1.52

1.54

1.56

1.58

1.60

1.62

1.64

1.66

1.68

1.70

2.00

2.20

...

Example 3

GIVEN: It is required to relieve 1000 lb/hr of ammonia from pressure vessel at 150°F.

PROBLEM: What is the required total capacity in pounds of steam per hour at the same pressure setting?

SOLUTION:

For ammonia

$$W = CKAP \sqrt{\frac{M}{T}}$$

Manufacturer and user agree to use k = 1.33; from Fig. 11-1, C = 350.

$$1000 = 350 \ KAP \ \sqrt{\frac{17.03}{460 + 150}}$$
$$KAP = 17.10$$

For steam,

Example 4

GIVEN: A safety valve bearing a certified rating of 10,000 cu ft/min of air at 60°F and 14.7 psia (atmospheric pressure).

PROBLEM: What is the flow capacity of this safety valve in pounds of saturated steam per hour for the same pressure setting?

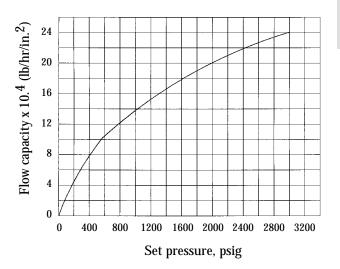
SOLUTION:

For air: Weight of dry air at 60°F and 14.7 psia is 0.0766 lb/cu ft.

$$45,960 = 356 \ \text{KAP} \ \sqrt{\frac{28.97}{460 + 60}}$$

$$KAP = 546$$

For steam,


$$W_s = 51.5 \ KAP = (51.5)(546)$$

= 28,200 lb/hr

NOTE: Before converting the capacity of a safety valve from any gas to steam, the requirements of UG-131(b) must be met.

11-2

(a) Since it is realized that the saturated water capacity is configuration sensitive, the following applies only to those safety valves that have a nozzle type construction (throat to inlet diameter ratio of 0.25 to 0.80 with a continuously contoured change and have exhibited a coefficient K_D in excess of 0.90). No saturated water rating shall apply to other types of construction.

NOTE: The manufacturer, user, and Inspector are all cautioned that for the following rating to apply, the valve shall be continuously subjected to saturated water. If, after initial relief the flow media changes to quality steam, the valve shall be rated as per dry saturated steam. Valves installed on vessels or lines containing steam-water mixture shall be rated dry saturated steam.

FIG. 11-2 FLOW CAPACITY CURVE FOR RATING NOZZLE TYPE SAFETY VALVES ON SATURATED WATER (BASED ON 10% OVERPRESSURE)

(b) To determine the saturated water capacity of a valve currently rated under UG-131 and meeting the requirements of (a) above, refer to Fig. 11-2. Enter the graph at the set pressure of the valve, move vertically upward to the saturated water line and read horizontally the relieving capacity. This capacity is the theoretical, isentropic value arrived at by assuming equilibrium flow and calculated values for the critical pressure ratio.

NOTES:

NOTES:

STEAM TABLE*

h = Total heat of steam, Btu per pound v = Specific volume, cubic feet per pound

Pres-	Tompor		Satur-	Satur-						TOTAL	TEMPER	ATURE, °F	:				
sure psi	Temper- ature F°		ated Liquid	ated Vapor	220	240	24.0	200	200					400	420	440	440
(gage)	(sat.)				220	240	260	280	300	320	340	360	380	400	420	440	460
0	212	h v	180.1 0.0167	1150.4 26.80	1154.4 27.15	1164.2 28.00	1173.8 28.85	1183.3 29.70	1192.8 30.53	1202.3 31.37	1211.7 32.20	1221.1 33.03	1230.5 33.85	1239.9 34.68	1249.3 35.50	1258.8 36.32	1268.2 37.14
5	228	h	196.2	1156.3		1162.3	1172.2	1182.0	1191.6	1201.2	1210.8	1220.3	1229.7	1239.2	1248.7	1258.2	1267.6
	220	v	0.0168	20.089		20.48	21.11	21.74	22.36	22.98	23.60	24.21	24.82	25.43	26.04	26.65	27.25
10	240	h v	208.4 0.0169	1160.6 16.303			1170.7 16.819	1180.6 17.330	1190.5 17.836	1200.2 18.337	1209.8 18.834	1219.4 19.329	1229.0 19.821	1238.5 20.31	1248.1 20.80	1257.6 21.29	1267.1 21.77
15	250	h	218.8	1164.1			1169.1	1179.3	1189.3	1199.1	1208.9	1218.6	1228.3	1237.9	1247.5	1257.0	1266.6
- 15	230	v	0.0170	13.746			13.957	14.390	14.816	15.238	15.657	16.072	16.485	16.897	17.306	17.714	18.121
20	259	h v	227.9 0.0171	1167.1 11.898			1167.5 11.911	1177.9 12.288	1188.1 12.659	1198.1 13.025	1208.0 13.387	1217.8 13.746	1227.5 14.103	1237.2 14.457	1246.8 14.810	1256A 15.162	1266.1 15.512
25	267	h	236.0	1169.7				1176.5	1186.8	1197.0	1207.0	1216.9	1226.7	1236.5	12462	1255.9	1265.5
25	207	v	0.0171	10.498				10.711	11.040	11.364	11.684	12.001	12.315	12.628	12.938	13.247	13.555
30	274	h v	243.4 0.0172	1172.0 9.401				1175.0 9.484	1185.6 9.781	1195.9 10.072	1206.0 10.359	1216.0 10.643	1225.9 10.925	1235.8 11.204	1245.6 11.482	1255.3 11.758	1265.0 120033
40	287	h	256.3	1175.9					1183.0	1193.6	1204.0	1214.3	1224.4	1234.3	1244.3	1254.1	1263.9
40	207	v	0.0173	7.787					7.947	8.192	8.432	8.668	8.902	9.134	9.364	9.592	9.819
50	298	h v	267.5 0.0174	1179.1 6.655					1180.3 6.676	1191.3 6.889	1202.0 7.096	1212.5 7.300	1222.7 7.501	1232.9 7.700	1242.9 7.896	1252.9 8.091	1262.8 8.285
(0	308	h	277.4	1181.9					0.070	1188.9	1199.9	1210.6	1221.1	1231.4	1241.6	1251.7	1261.7
60	308	v	0.0175	5.816						5.9321	6.116	6.296	6.473	6.648	6.820	6.991	7.161
70	316	h v	286.4 0.0176	1184.2 5.168						1186.4 5.200	1197.7 5.366	1208.7 5.528	1219.4 5.687	1229.9 5.843	1240.2 5.997	1250.4 6.150	1260.6 6.301
	224	h	294.6	1186.2						0.200	1195.5	1206.7	1217.7	1228.3	1238.8	1249.2	1259.4
80	324	v	0.0177	4.652							4.773	4.921	5.065	5.207	5.347	5.485	5.621
90	331	h v	302.1 0.0178	1188.1 4.232							1193.2 4.292	1204.7 4.429	1215.9 4.562	1226.7 4.693	1237.4 4.821	1247.9 4.947	1258.2 5.071
100	220	h	309.1	1189.7							1190.8	1202.7	1214.1	1225.2	1236.0	1246.6	1257.1
100	338	v	0.0178	3.882							3.895	4.022	4.146	4.267	4.385	4.502	4.617
125	353	h v	324.8 0.0180	1193.0 3.220								1197.3 3.258	1209.4 3.365	1211.1 3.468	1232.3 3.569	1243.3 3.667	1254.1 3.764
450		h	338.5	1195.6								0.200	1204.5	1216.7	1228.4	1239.8	1251.0
150	366	v	0.0182	2.752									2.818	2.910	2.998	3.085	3.169
175	378	h v	350.8 0.0183	1197.6 2.404									1199.3 2.414	1212.2 2.498	1224.5 2.577	1236.3 2.655	1247.8 2.730
200	200	h	361.9	1199.3									2.111	1207.4	1220.3	1232.6	1244.5
200	388	v	0.0185	2.134										2.180	2.253	2.324	2.393
225	397	h v	372.1 0.0186	1200.6 1.9183										1202.5 1.9276	1216.0 1.9964	1228.8 2.062	1241.1 2.126
250	10/	h	381.6	1201.7											1211.5	1224.9	1237.6
250	406	v	0.0187	1.7422											1.7870	1.8488	1.9081
275	414	h v	390.5 0.0188	1202.6 1.5954											1206.8 1.6130	1220.8 1.6717	1234.0 1.7277
200	400	h	398.8	1203.2											1.0100	1216.5	1230.3
300	422	v	0.0190	1.4711												1.5222	1.5755
350	436	h v	414.1 0.0192	1204.1 1.2720												1207.5 1.2831	1222.4 1.3326
400	440	h	428.1	1204.6												1.2001	1214.0
400	448	v	0.0194	1.1194													1.1468
450	460	h v	440.9 0.0196	1204.6 0.9985													
F a a	470	h	452.9	1204.2													
500	470	v	0.0198	0.9004													
550	480	h v	464.1 0.0200	1203.7 0.8191													
		h	474.7	1203.0													
600	489	v	0.0202	0.7503													

*Adapted with permission from "Thermodynamic Properties of Steam", Keenan and Keyes, published by John Wiley & Sons, Inc.

STEAM TABLE*

h = Total heat of steam, Btu per pound v = Specific volume, cubic feet per pound

TOTAL TEMPERATURE, °F													Temp-	Pres-			
480	500	520	540	560	580	600	620	640	660	680	700	720	740	750		erature °F (sat.)	sure psi (gage)
1277.6	1287.1	1296.6	1306.2	1315.7	1325.3	1334.8	1344.5	1354.2	1363.8	1373.5	1383.2	1393.0	1402.8	1407.7	h	212	
37.96 1277.1	38.78 1286.6	39.60 1296.2	40.41 1305.7	41.23 1315.3	42.04 1324.8	42.86 1334.4	43.68 1344.1	44.49 1353.8	45.31 1363.5	46.12 1373.2	46.94 1382.9	47.75 1392.7	48.56 1402.6	48.97 1407.5	v h		
27.86	28.46	29.06	29.67	30.27	30.87	31.47	32.07	32.67	33.27	33.87	34.47	35.07	35.67	35.96	v	228	5
1276.6	1286.2	1295.8	1305.3	1314.9	1324.5	1334.1	1343.8	1353.5	1363.2	1372.9	1382.6	1392.5	1402.3	1407.2	h	240	10
22.26	22.74	23.22	23.71	24.19	24.68	25.16	25.64	26.12	26.60	27.08	27.56	28.04	28.52	28.76	V		
1276.2 18.528	1285.7 18.933	1295.3 19.337	1304.9 19.741	1314.5 20.144	1324.2 20.547	1333.8 20.95	1343.5 21.35	1353.2 21.75	1362.9 22.15	1372.6 22.56	1382.4 22.96	1392.3 23.36	1402.1 23.76	1407.0 23.96	h v	250	15
1275.7	1285.3	1294.9	1304.5	1314.1	1323.8	1333.5	1343.2	1352.9	1362.6	1372.3	1382.1	1391.9	1401.8	1406.7	h	050	
15.862	16.210	16.558	16.905	17.251	17.597	17.943	18.288	18.633	18.977	19.322	19.666	20.01	20.35	20.52	v	259	20
1275.2	1284.8	1294.5	1304.1	1313.8	1323.4	1333.1	1342.8	1352.5	1362.3	1372.1	1381.9	1391.7	1401.6	1406.5	h	267	25
13.862 1274.7	14.168 1284.4	14.473 1294.0	14.778 1303.7	15.082	15.385 1323.1	15.688 1332.8	15.990 1342.5	16.293 1352.2	16.595 1362.0	16.896	17.198 1381.6	17.499 1391.5	17.8001	7.951	v h		
12/4.7	1284.4	1294.0	1303.7	1313.4 13.394	1323.1	1332.8	1342.5	1352.2	1362.0	1371.8 15.011	15.279	15.547	1401.4 15.815	15.949		274	30
1273.7	1283.4	1293.2	1302.9	1312.6	1322.4	1332.1	1341.9	1351.7	1361.5	1371.3	1381.1	1391.0	1400.9	1405.8	h	0.07	10
10.044	10.269	10.493	10.717	10.940	11.162	11.384	11.605	11.826	12.047	12.268	12.488	12.708	12.927	13.037	v	287	40
1272.7	1282.5	1292.3	1302.1	1311.9	1321.7	1331.5	1341.3	1351.1	1360.9	1370.8	1380.6	1390.5	1400.4	1405.4	h	298	50
8.478	8.670	8.861	9.051	9.240	9.429	9.618	9.806	9.993	10.181	10.368	10.555	10.741	10.928	11.021	V		
1271.6 7.329	1281.5 7.496	1291.4 7.663	1301.3 7.829	1311.1 7.994	1321.0 8.159	1330.8 8.323	1340.6 8.486	1350.5 8.649	1360.3 8.812	1370.2 8.975	1380.1 9.138	1390.0 9.300	1399.9 9.462	1404.9 9.543	h v	308	60
1270.6	1280.6	1290.5	1300.5	1310.4	1320.2	1330.1	1340.0	1349.9	1359.8	1369.7	1379.6	1389.6	1399.5	1404.5	h		
6.450	6.599	6.747	6.894	7.041	7.187	7.332	7.477	7.622	7.766	7.910	8.054	8.198	8.341	8.413	v	316	70
1269.5	1279.6	1289.6	1299.6	1309.6	1319.5	1329.4	1339.4	1349.3	1359.3	1369.2	1379.1	1389.1	1399.0	1404.0	h	324	80
5.756 1268.5	5.891 1278.6	6.024 1288.7	6.156 1298.8	6.288 1308.8	6.419 1318.8	6.550 1328.7	6.680 1338.7	6.810 1348.7	6.940 1358.6	7.069 1368.6	7.199 1378.5	7.327 1388.5	7.456 1398.5	7.520	v h		
5.195	5.317	5.439	5.559	5.679	5.799	5.918	6.036	6.154	6.272	6.389	6.506	6.623	6.740	6.798	v v	331	90
1267.4	1277.7	1287.8	1297.9	1308.0	1318.0	1328.1	1338.1	1348.0	1358.0	1368.0	1378.0	1388.1	1398.1	1403.1	h	220	100
4.730	4.843	4.955	5.066	5.176	5.285	5.394	5.503	5.611	5.719	5.827	5.934	6.041	6.148	6.201	v	338	100
1264.7	1275.2	1285.5	1295.8	1306.0	1316.2	1326.4	1336.5	1346.6	1356.6	1366.7	1376.8	1386.9	1397.0	1402.0	h	353	125
3.860 1261.9	3.954 1272.6	4.047 1283.2	4.140 1293.6	4.232 1304.0	4.323 1314.3	4.413 1324.6	4.503 1334.8	4.593 1345.0	4.683 1355.2	4.772 1365.3	4.861 1375.4	4.949 1385.6	5.038 1395.8	5.082 1400.8	v h		
3.252	3.334	3.414	3.494	3.573	3.652	3.730	3.807	3.884	3.960	4.037	4.113	4.188	4.264	4.301	v v	366	150
1259.0	1270.0	1280.8	1291.4	1302.0	1312.4	1322.8	1333.2	1343.5	1353.7	1363.9	1374.2	1384.4	1394.6	1399.7	h	270	175
2.804	2.877	2.948	3.019	3.089	3.157	3.226	3.294	3.361	3.429	3.495	3.562	3.628	3.694	3.727	v	378	175
1256.0	1267.3	1278.3	1289.2	1299.9	1310.5	1321.0	1331.4	1341.8	1352.2	1362.5	1372.8	1383.1	1393.3	1398.5	h	388	200
2.460	2.525	2.590	2.653	2.716	2.777 1308.5	2.839	2.900	2.960	3.019	3.079 1361.1	3.139	3.198	3.256	3.286	v h		
1253.0 2.187	1264.5 2.247	1275.8 2.306	1286.9 2.364	1297.8 2.421	2.477	1319.2 2.533	1329.8 2.587	1340.3 2.642	1350.7 2.696	2.750	1371.5 2.804	1381.9 2.857	1392.2 2.910	1397.3 2.936		397	225
1249.9	1261.7	1273.2	1284.5	1295.6	1306.5	1317.3	1328.0	1338.7	1349.2	1359.7	1370.2	1380.6	1391.0	1396.2	h		
1.9654	2.021	2,076	2.129	2.181	2.233	2.284	2.334	2.384	2.434	2.483	2.532	2.580	2.629	2.653	v	406	250
1246.6	1258.8	1270.6	1282.1	1293.4	1304.5	1315.5	1326.3	1337.0	1347.7	1358.3	1368.8	1379.3	1389.8	1395.0	h	414	275
1.7816	1.8338	1.8846	1.9342	1.9829	2.031	2.078	2.125	2.171	2.217	2.262	2.307	2.352	2.396	2.418	V		
1243.3 1.6266	1255.8 1.6759	1267.9 1.7237	1279.7 1.7703	1291.2 1.8159	1302.5 1.8607	1313.6 1.9048	1324.5 1.9483	1335.4 1.9912	1346.1 2.034	1356.8 2.076	1367.4 2.118	1378.0 2.159	1388.6 2.200	1393.8 2.220	h v	422	300
1236.4	1249.6	1262.4	1274.7	1286.6	1298.2	1309.7	1320.9	1332.0	1343.0	1353.9	1364.7	1375.4	1386.1	1391.4	h		
1.3795	1.4243	1.4675	1.5094	1.5501	1.5900	1.6291	1.6676	1.7056	1.7430	1.7801	1.8168	1.8531	1.8892	1.9071	v	436	350
1229.0	1243.2	1256.6	1269.4	1281.8	1293.9	1305.7	1317.2	1328.6	1339.8	1350.9	1361.9	1372.8	1383.6	1389.0	h	448	400
1.1908	1.2325	1.2724	1.3108	1.3480	1.3842	1.4196	1.4544	1.4885	1.5222	1.5554	1.5883	1.6207	1.6529	1.6689	v		
1221.2 1.0416	1236.3 1.0811	1250.5 1 1186	1264.0 1 1544	1276.9 1 1889	1289.4 1 2224	1301.6 1.2550	1313.5 1.2868	1325.1	1336.5	1347.8	1359.0 1.4088	1370.1	1381.1	1386.5 1.4819	h v	460	450
1212.8	1229.0	1.1186 1244.0	1.1544 1258.3	1.1889 1271.8	1.2224 1284.8	1.2550 1297.3	1309.6	1.3180 1321.5	1.3488 1333.2	1.3789 1344.7	1356.1	1.4382 1367.3	1.4675 1378.4	1384.0	h		
0.9204	0.9584	0.9941	1.0280	1.0604	1204.0	1297.3	1.1516	1.1805	1.2088	1.2367	1.2641	1.2913	1.3180	1.3313	v	470	500
	1221.4	1237.4	1252.4	1266.5	1280.0	1293.0	1305.6	1317.8	1329.8	1341.6	1353.2	1364.6	1375.8	1381.4	h	480	550
	0.8565	0.8909	0.9234	0.9542	0.9838	1.0124	1.0401	1.0671	1.0935	1.1195	1.1449	1.1700	1.1947	1.2070	v	400	550
	1213.2	1230.3	1246.1	1261.0	1275.1	1288.5	1301.5	1314.1	1326.3	1338.3	1350.2	1361.8	1373.2	1378.9	h	489	600
	0.7703	0.8040	0.8353	0.8649	0.8931	0.9203	0.9465	0.9720	0.9968	1.0211	1.0450	1.0684	1.0916	1.1030	V		

*Adapted with permission from "Thermodynamic Properties of Steam", Keenan and Keyes, published by John Wiley & Sons, Inc.

PENCE SPENCE ENGINEERING COMPANY, INC. 150 COLDENHAM ROAD, WALDEN, NY 12586-2035

MANUFACTURERS OF

A division of CIRCOR International, Inc.

PHONE: (845) 778-5566 • FAX: (845) 778-1072 • www.spenceengineering.com • email: sales@spenceengineering.com